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ABBREVIATIONS AND DEFINITIONS: 
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CPC: Condensation Particle Counter 
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FMPS: Fast Mobility Particle Sizer 

GI: Gastrointestinal 

GSD: Geometric Standard Deviation 

HTS: High-throughput Screening 

ICRP: International Commission on Radiological Protection 

MPPD: Multi-Path Particle Dosimetry 

MWCNT: Multi-walled Carbon Nanotube 

NCCT: National Center for Computational Toxicology 

NIOSH: National Institute for Occupational Safety and Health 

NM: Nanomaterial 

NP: Nanoparticle 

OSHA : Occupational Safety and Health Administration  

SMPS: Scanning Mobility Particle Sizer 

SWCNT: Single-walled Carbon Nanotube 

TiO2: Titanium Dioxide 

TB: Tracheobronchial 

VT : Tidal Volume
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ABSTRACT 

Background: Little justification is generally provided for selection of in vitro assay testing 

concentrations for engineered nanomaterials (ENMs). Selection of concentration levels for hazard 

evaluation based on real-world exposure scenarios is desirable.  

Objectives: Our goal is to use estimates of lung deposition following occupational exposure to 

nanomaterials to recommend in vitro testing concentrations for the U.S. Environmental Protection 

Agency’s ToxCast
TM

 program. We provide testing concentrations for carbon nanotubes (CNTs), 

titanium dioxide (TiO2) and silver (Ag) nanoparticles.  

Methods: We reviewed published ENM concentrations measured in air in manufacturing and R&D 

labs to identify input levels for estimating ENM mass retained in the human lung using the 

Multiple-Path Particle Dosimetry (MPPD) model. Model input parameters were individually varied 

to estimate alveolar mass retained for different particle sizes (5-1000 nm), aerosol concentrations 

(0.1, 1 mg/m
3
), aspect ratios (2, 4, 10, 167), and exposure durations (24 hours and a working 

lifetime). The calculated lung surface concentrations were then converted to in vitro solution 

concentrations. 

Results: Modeled alveolar mass retained after 24 hours is most affected by activity level and aerosol 

concentration. Alveolar retention for Ag and TiO2 nanoparticles and CNTs for a working lifetime 

(45 years) exposure duration is similar to high-end concentrations (~ 30-400 µg/mL) typical of in 

vitro testing reported in the literature.  

Conclusions: Analyses performed are generally applicable to provide ENM testing concentrations 

for in vitro hazard screening studies though further research is needed to improve the approach. 

Understanding the relationship between potential real-world exposures and in vitro test 

concentrations will facilitate interpretation of toxicological results.
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INTRODUCTION 

Researchers evaluating toxicity and human exposure potential of engineered nanomaterials 

(ENMs) are challenged by rapid development of novel materials for new applications as the 

nanotechnology industry drives forward. These materials can add significant value to industrial or 

consumer products. ENMs have one or more component with at least one dimension in the range of 

1-1000 nm. Components can include nanoparticles (NPs), nanofibers and nanotubes, nanodots, 

nano-structured surfaces or nanocomposites. Carbon nanotubes (CNTs) and metal oxide 

nanoparticles (two material types having the highest industrial production volumes) are used in 

plastics, catalysts, battery and fuel cell electrodes, solar cells, paints, coatings, etc. (Klaine et al. 

2008). Nanoparticulate silver (Ag) has the greatest number of consumer product applications. Novel 

nanomaterial (NMs) types continue to be synthesized based on the value they may add, often 

without evaluation of implications for human health, toxicity, environmental impact or long-term 

sustainability. Nanomaterials, especially the ones made of metals, semiconductors and various 

inorganic compounds, have the potential for post-use risks to humans and the environment (NNI 

2008). There is a need to examine and address these concerns before the widespread adoption of 

nanotechnologies (Oberdorster et al. 2005). 

The U.S. Environmental Protection Agency (EPA) is beginning to evaluate exposure and 

hazard potential of nanomaterials and prioritize them for further animal-based toxicological testing. 

Prioritization of nanomaterial classes and types for targeted testing is important in the early stages 

of NM development. Currently, only a small portion of the thousands of commonly used chemicals 

in the Toxic Substances Control Act (TSCA 1976) inventory (U.S. EPA 2004) have undergone 

animal testing due to the high cost (millions of dollars) and long timeframe (2-3 years) required per 

chemical (Judson et al. 2009). Of the unique chemicals (~10,000) that the EPA is most concerned 
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with, only a fraction have been evaluated for specific classes of toxicity (Judson et al. 2009). The 

EPA’s ToxCast research program was started in 2007 and seeks to predict the potential toxicity of 

environmental chemicals based on in vitro bioactivity profiling at minimal cost as compared to full-

scale animal testing (Dix et al. 2007). An initial set of ~300  chemicals (primarily pesticides) was 

tested in phase I of ToxCast in 467 high-throughput screening (HTS) biochemical and cell-based 

assays across nine technologies (Judson et al. 2010). A study has been initiated to evaluate the 

potential of ToxCast methods for screening nanomaterials. A subset of ToxCast in vitro HTS cell-

based assays will be run on nanomaterials to produce similar bioactivity profiles and toxicity 

predictions. Most of the cell-based assays have an exposure time of 24 hours. Initial nanomaterial 

types to be evaluated include single-walled carbon nanotubes (SWCNTs) and multi-walled carbon 

nanotubes (MWCNTs) along with silver (Ag), titanium dioxide (TiO2) and gold (Au) nanoparticles.  

Design and conduct of ToxCast screening of NMs requires selection of testing 

concentrations, characterization of materials, and analysis of resulting HTS data. Selection of 

concentrations used for in vitro toxicity studies of nanomaterials often lack scientific justification 

and are often chosen to be very high to ascertain a toxicological endpoint without consideration of 

real-world exposure (Oberdorster et al. 2005). Some researchers have utilized particle 

concentrations causing “overload” (Warheit et al. 2009), a dose where pulmonary clearance 

becomes severely impaired (Morrow 1988). Although high testing concentrations may be 

considered to ensure that NMs show bioactivity across the spectrum of assays evaluated, there is 

also a need for biologically relevant human exposure information to facilitate interpretation of assay 

results (Cohen Hubal 2009). Authors of the National Academy of Sciences (NAS), “Toxicity 

Testing in the 21
st
 Century: A Vision and a Strategy,” noted that human exposure information is 

required to select doses for toxicity testing facilitating development of environmentally-relevant 

hazard information (NRC 2007). 

Page 5 of 34



6 

 

Recognizing the critical need for exposure information to inform chemical design, 

evaluation and health risk management, the EPA’s ExpoCast
TM

 program was initiated in 2010 to 

meet challenges posed by new toxicity testing approaches (Cohen Hubal et al. 2010). The goal of 

ExpoCast is to advance characterization of exposure required to translate findings in computational 

toxicology to information that can be directly used to support exposure and risk assessment. 

Combining information from ToxCast with information from ExpoCast will help the EPA prioritize 

nanomaterials and chemicals for further evaluation based on potential risk to human health.  

Human exposures to ENMs are likely to be higher for workers in occupational settings than 

for the general population including consumers (Bergamaschi 2009) and may thus provide upper 

bounding estimates of exposure potentials. For consumers the greatest exposure to ENMs likely 

comes from products that are ingested or that come into intimate contact with the body (Kessler 

2011). Though ingestion and dermal exposures must also be considered during the product life 

cycle (manufacturing, usage, and disposal of EMNs) (Oberdorster et al. 2005; U.S. EPA 2010), 

inhalation may be the key route of human exposure in nanotechnology manufacturing and R&D 

facilities (Bergamaschi 2009; Hoet et al. 2004). As such, many studies have focused on the 

inhalation exposure route for ENMs and consider potential airborne releases of nanomaterials from 

facilities. Following intake of nanoparticle-containing aerosols, high deposition fractions in the 

alveolar region (for particles < 100 nm in size) and the head region (diameter < 5 nm) are predicted 

by the Multiple-Path Particle Dosimetry (MPPD) and International Commission on Radiological 

Protection (ICRP) models (U.S. EPA 2009). Nanomaterial exposure of the lung parenchyma is of 

concern due to long-term retention in this lower region and potential for particles to cause 

cytotoxicity and translocate. 
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GENERAL APPROACH 

The aim of this study is to use information on potential ENM exposure in the occupational 

setting to recommend in vitro testing levels for bioprofiling in EPA’s ToxCast program. The general 

approach taken (Figure 1) was to assume the inhalation exposure route for NMs to be of primary 

concern for humans in occupational settings. Occupational aerosol levels of nanomaterials reported 

in the literature were reviewed and used as inputs for lung dosimetry modeling. These reported NM 

concentrations from manufacturing and R&D laboratory facilities were assumed to provide a high 

end potential for real-world nanomaterial exposure to the general population, higher than exposures 

that may result from consumer products (Bergamaschi 2009).  

The maximum reported NM aerosol concentrations (mass per m
3
 of air) were taken as an 

input for the MPPD model to estimate deposition, clearance and mass retained in the alveolar region 

of the human lung. A sensitivity analysis was performed to evaluate MPPD input parameters that 

most affect NM alveolar retention after 24 hours of exposure. Two exposure scenarios were 

considered for further modeling: exposure over the course of 24-hours (based on the standard assay 

exposure duration) and 45 years (a full occupational lifetime). For each scenario, we varied the 

significant parameters to estimate the mass of particles retained in the alveolar region per surface 

area. Model results of lung surface mass concentrations were then converted (using the reported 

well bottom surface area and volume delivered) to suggest testing solution mass concentrations for 

in vitro screening. All of the applied material is assumed to deposit on the bottom of the well. The 

results suggest upper and lower bounding HTS assay testing concentrations based on potential for 

real world NM exposures at short and long durations via the inhalation route in an occupational 

setting. The concentrations were subsequently compared to in vitro concentrations found in recent 

literature. Although we have chosen here to consider aerosol mass concentration, we recognize that 
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other lung deposition metrics (based on particle number or particle surface area) are also potentially 

important for understanding health risk. 

A small fraction of nanoparticles deposited in the alveolar region may be cleared into the 

blood stream by absorption. Particles that deposit in the respiratory tract can also be cleared to the 

gastrointestinal (GI) tract via the pharynx or to the regional lymph nodes (LN) via lymphatic 

channels. Only lung surface cells would receive the same concentration of NPs as estimated here for 

inhalation. Modeling exposure to other cell types is beyond the scope of this paper but these 

exposures would likely be significantly lower concentrations than that calculated for lung cells. 

DATA AND METHODS 

Nanomaterial air concentrations: We reviewed occupational exposure studies that 

measured airborne levels of ENMs. The instruments used to obtain particle number concentrations 

were typically the condensation particle counter (CPC), scanning mobility particle sizer (SMPS), 

and the fast mobility particle sizer (FMPS). In some cases, personal air samples collected 

nanoparticles on filters from the breathing zone of workers during the work day. The SMPS and 

FMPS instruments provide real-time temporal changes in particle size. The data give particle 

number concentrations (particles/cm
3
 of air) versus particle diameter across the size distribution. 

The CPC provides particle number concentration (particles/cm
3
 of air) for particles in the range 

from 2.5 to >1000 nm. The instruments can also report the change in particle number concentration 

versus time. We searched for the highest aerosol particle number concentrations for TiO2 and Ag 

nanoparticles, and CNTs (including MWCNTs) in manufacturing and R&D settings (Table 1). 

Background particle number concentrations were subtracted from the maximum particle number 

concentrations if they were reported. Typically, particle counts per volume (cm
3
) of air are reported 

while exposure limits are set as mass concentrations (mg/m
3
). To convert from reported particle 
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count concentration to mass concentration, TiO2 and Ag NPs were assumed to be spherical and the 

reported size (taken to be geometric particle diameter) was used to calculate a particle volume. The 

CNTs were assumed to be cylindrical and reported diameter and length were used to obtain particle 

volume. A CNT length of 0.5 µm was assumed if it was not reported. A density of 4, 10, and 2 

g/cm
3
 was assumed for TiO2 NPs, Ag NPs and CNT, respectively, based on specifications of similar 

materials from supplier websites (http://www.sigmaaldrich.com and http://www.nanoamor.com/). 

The high-end reported particle counts were approximated to mass concentrations by multiplying 

particle volume by the assumed density (Table 1). 

The calculated mass concentrations were typically less than ~ 0.1 mg nanomaterial per 

volume (m
3
) of air (Table 1). One study on MWCNTs reported a higher mass concentration of 

0.3208 mg/m
3
 (Lee et al. 2010). However, this value was from personal sampler filters with typical 

sampling durations of 183-409 min. The mass concentration would be lower if calculated over the 

time duration. Data normalized over exposure characterization duration from a liquid-phase 

production facility of Ag NPs yielded a mass concentration of 0.46 mg/m
3
 for one minute (Park et 

al. 2009). In this study, both change in particle number concentration versus time and total number 

of particles (with diameters between 10-250 nm) counted over a range of time are reported. A 

conservative aerosol concentration of 1 mg/m
3
 was taken to be an upper exposure limit. Though the 

U.S. National Institute for Occupational Safety and Health (NIOSH) does not have a recommended 

exposure limit (REL) for TiO2 NPs, a draft NIOSH bulletin recommends “0.1 mg/m
3
 for ultrafine 

TiO2, as time-weighted average concentrations (TWA) for up to 10 hr/day during a 40-hour work 

week” where ultrafine is defined as the fraction of respirable particles with primary particle 

diameter <  100 nm (NIOSH 2005). A recent draft NIOSH bulletin has proposed a REL of 0.007 

mg/m
3
 for CNTs and carbon nanofibers (NIOSH 2010). Using a different approach, an occupational 

exposure limit (OEL) of 0.05 mg/m
3
 was derived for Baytubes, a more flexible MWCNT type 
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(Pauluhn 2010). There is no limit set of silver nanoparticles in the US. However, the Occupational 

Safety and Health Administration (OSHA) established a permissible exposure limit (PEL) of 0.01 

mg/m
3
 (which is the same REL set by NIOSH) for all forms of airborne silver (Miller et al. 2010). 

The American Conference of Governmental Industrial Hygienists (ACGIH) set a threshold limit 

value (TLV) of 0.1 mg/m
3 
for metallic silver and 0.01 mg/m

3
 for soluble silver compounds (Miller 

et al. 2010). The mass concentrations derived based on measured aerosol levels were taken as a 

basis and used as inputs to model the mass of nanoparticles that could deposit and be retained deep 

in human lungs. 

Lung Dosimetry Modeling: 

MPPD model application: Particle deposition and clearance in human lungs was estimated 

using the recently developed, publicly-available MPPD model (version 2.1 for nanoparticles, 

presently supported by Applied Research Associates, Inc.). The model can be used to estimate 

particle dosimetry in both human and rat airways (Anjilvel and Asgharian 1995; Asgharian et al. 

2001). It calculates deposition and clearance of particles (with size ranging from ultrafine (0.001 

µm) to coarse (100 µm) in the respiratory tract based on user-provided input on airway 

morphometry, clearance rates, particle properties (density, diameter, and size distribution), and 

exposure scenario (aerosol concentration and activity breathing pattern, and exposure duration). 

There are three main particle deposition mechanisms (impaction, sedimentation and diffusion) 

incorporated in the model and deposition in different regions of the lung are calculated using 

published analytic formulas (Anjilvel and Asgharian 1995). Clearance from each lung region is 

treated competitively between absorption into the blood and particle transport processes (from the 

respiratory tract to the GI tract and to lymph nodes, and from one region to another) (ICRP 1994). 

Retention in the human alveolar-interstitial region is represented by three compartments which clear 

at fast, medium and slow rates to the lymph nodes and the bronchiolar region (ICRP 1994). Though 
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the clearance kinetics in the MPPD model were based on studies of micro-sized particles, evidence 

suggests efficient surface macrophage uptake and clearance of both micro- and nanoparticles as 

well as penetration of both sized particles through the human lung epithelium into the interstitial 

region, from which they are slowly cleared (Geiser and Kreyling 2010). In addition, the MPPD 

model (version 2.1) incorporates improved estimates of particle losses from the airway by diffusion 

and includes particle-specific axial diffusion and dispersion effects in the transport equation 

(Asgharian and Price 2007). This updated model provides for more realistic assessment of regional 

deposition of diffusion-dominated (nano-sized) particles in the lung (Asgharian and Price 2007). A 

MPPD model version (obtained directly from Applied Research Associates, Inc.) that incorporates 

length to diameter aspect ratio to predict inhaled nanofiber/nanotube deposition in the human lung 

was used for nonspherical CNTs/MWCNTs (NIOSH 2008). This model incorporates altered 

analytical expressions for deposition efficiency of nanofibers of a given aspect ratio by adjusting for 

the viscous drag and nanofiber orientation in the deposition efficiency equation for spherical 

particles. The clearance calculations are valid only for spherical particles. 

An initial baseline set of MPPD inputs (Table 2) were selected based on data from the ICRP 

report (ICRP 1994), which provides morphological characteristics and physiological parameters for 

the human respiratory tract. We organized the MPPD model input parameters into three categories: 

individual characteristics, exposure scenario, and material properties. For the individual 

characteristics input, the airway morphometry selected was the human Yeh/Schum symmetric lung 

model (Yeh and Schum 1980). Default values were selected for the clearance rates and other 

parameters. For the exposure scenario input, 0.1 mg/m
3
 aerosol concentration was selected and light 

exercise activity breathing pattern for an adult male were assumed with 20 breaths/min frequency at 

1250 mL tidal volume, VT  (ICRP 1994). Oronasal-mouth breather was selected for breathing 

scenario as humans typically switch to breathing partly through the mouth and through the nose at 
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ventilation rates between light and heavy exercise (ICRP 1994). For the particle properties input, a 

particle count median (CMD) diameter of 40 nm was selected, assuming a single mode of log-

normal size distribution with size geometric standard deviation (GSD) of 1.25 based on the ICRP 

report. Inhalability was not considered since it approaches 100% for small (< 5 µm) particles (ICRP 

1994). The length to diameter aspect ratio was set to 1. 

Sensitivity analysis: Key determinants of MPPD model predictions of mass (mg) retained in 

the alveolar region were determined by systematically altering each input baseline parameter one at 

a time, while holding the others constant, and re-running the model based on a 24 hour exposure 

duration with 1 week of total time (Table 3) to allow for clearance. For the individual characteristic 

inputs, two different size (based on total number of airways) human stochastic lung models were 

evaluated because these provide more realistic lung geometry than the symmetric lung model.  

Calculations were also performed using an age-specific symmetric lung model for a three year old 

child. Though, this group is unlikely to be exposed occupationally, we wanted to check model 

results for a vulnerable population group. The alveolar interstitial rate constants for fast, medium, 

slow, and lymph node human clearance were doubled, halved, and increased by and decreased by 

an order of magnitude. Tracheal mucosal velocity was not considered since it only affects TB 

clearance rates and residence times and will not affect long term alveolar burden. For the exposure 

scenario inputs, the aerosol concentration was decreased by one order of magnitude from 0.1 

mg/m
3
. As a conservative estimate in case the mass per air volume concentration is much higher 

than what is reported, the aerosol mass concentration was also increased by one and two orders of 

magnitude. Both heavy exercise and resting breathing patterns were evaluated as well as purely 

nasal and oral breathing. For the particle properties inputs, we considered a low size diameter of 5 

nm, a high diameter of 100 nm, a low GSD of 1 (monodisperse diameter distribution), and a high 
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GSD of 4 (polydisperse diameter distribution). Additionally, aspect ratios from 4-1000 were 

evaluated with a length GSD of 1.0 (as a conservative estimate) and density of 2. 

For this sensitivity analysis, if the alveolar mass retained using the new setting resulted in a 

percentage change greater than or equal to 10 % of the baseline amount, the parameter was 

considered to be significant and was evaluated further. If the alveolar mass retained using the new 

setting yielded a negative percentage change compared to the baseline setting, then the input was 

not considered since we are interested in a conservative exposure approach that may overestimate 

particle deposition and retention deep in the lungs. If alveolar retention output did not change 

linearly with change in input, additional input changes were considered to better characterize model 

behavior over the relevant range. The MPPD input parameters determined to be significant were 

evaluated further to calculate mass retained in the alveolar region per alveolar surface area based on 

two exposure durations: a short-term exposure duration of 24-hours and a long-term occupational 

lifetime exposure. The  long-term scenario assumed a 45 year full working lifetime (Schulte et al. 

2010) with 8 hours inhalation per day, 5 days per week, 52 weeks per year. The alveolar surface 

area (~ 106,350 cm
2
) was obtained from the MPPD model results report by summing the pulmonary 

surface area for lung generations 17 to 24. This alveolar surface area only accounts for surface area 

of the airways (alveolar ducts) and not the alveolar sacs and thus is a low estimate of the actual 

alveolar surface area. The MPPD calculations were performed for different particle sizes (5, 10, 20, 

30, 40, 50, 60, 70, and 100 nm), aerosol concentrations (0.1 and 1 mg/m^3), and exposure 

durations. Larger particle sizes (200, 500 and 1000 nm) were also run as particle aggregation of 

nano-sized particles may occur in air (Maynard et al. 2004; Methner et al. 2010a) or inside the 

human respiratory tract. For CNTs, an aspect ratio of 167 was selected based on material 

dimensions (5 µm length, 30 nm diameter) of one sample to be tested in ToxCast. Aspect ratios of 

2, 4 and 10 were also run for the different particle sizes. These aspect ratios were chosen based on 
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electron images of SWCNT aggregates from the literature (Baron et al. 2008). Searching for 

realistic airborne CNT aspect ratios was challenging since many exposure studies found no 

evidence of carbon-based nanotubes or nanotube bundles in air samples (Bello et al. 2008; Bello et 

al. 2009). In one study of seven CNT handling workplaces, TEM micrographs reveal clumped 

structures with aspect ratio of ~ 8-10 and diameter of ~ 100 nm (Lee et al. 2010). However, these 

particle aggregates are mostly metal components rather than CNTs. 

Determining in vitro concentrations: Based on MPPD model predictions, associated in 

vitro concentrations were determined by calculating mass retained in the alveolar region of the lung 

per alveolar surface area for each particle size, at two aerosol concentrations (0.1 and 1 mg/m
3
) and 

for each exposure scenario (24 hours and 45 years). We assumed that the NM mass retained at the 

lung surface can be directly correlated to NM mass sedimented on the bottom surface of a well.  To 

convert to mass of nanomaterial per volume of solution, the resulting mass per alveolar surface area 

concentration (µg/cm
2
) was multiplied by the bottom surface area of a single well in a 12-, 96- or 

384-well plate and divided by the culture medium volume added to each well (as obtained from the 

assay contractors). The 12-, 96- and 384-well plates had a single well bottom surface area of 3.8, 

0.32, and 0.056 cm
2
 and volume presented of 1000, 200, and 50 µL, respectively. The converted 

concentrations were compared to in vitro concentrations tested using human, mouse and rat cell 

lines in the literature (see Supplemental Material Tables S1, S2, and S3). Though final selection of 

concentration will be include consideration of the MPPD model output and conversion, there will 

still be a need to test at levels based on where bioactivity has been demonstrated in the literature, 

bounded by concentration levels that can be dispersed with long-term stability in cell culture media. 

Another method to determine high range in vitro concentrations to test could be to evaluate a 

NM steady state mass in the alveolar region of the lung. Steady state occurs when the clearance rate 
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equals the rate of deposition and the NM mass retained reaches a constant value. It has been 

reported to take more than 10 years to reach a steady state lung burden for insoluble 1 µm-sized 

particles for a 0.01 mg/m
3
 aerosol concentration based on resting human breathing pattern (Brown 

et al. 2005). 

 

 

RESULTS AND DISCUSSION 

Key MPPD model input parameters: For the MPPD baseline settings used here (Table 2), 

a steady state retention dose will take more than 80 years to achieve for 40 nm particles based on 

inhaling an aerosol concentration of 0.1 mg/ m
3
 for 8 hours a day, 5 days a week. Due to the long 

time to achieve steady state, this method was not utilized. Instead, we focused on modeling 

potential exposure scenarios and understanding implications of associated model inputs. Model 

results for the baseline input parameters (Table 2) resulted in 1.22 mg alveolar mass retained.  

Results of the sensitivity analysis (alveolar mass retained, percentage change in model 

output and input, and sensitivity percentage [output % change by input % change]) are presented in 

Table 3. Though interactions between input parameters may occur, we assumed that key parameters 

could be uncovered by varying one parameter per run. Based on this analysis, aerosol concentration 

and heavy exercise breathing pattern were the most important MPPD input parameters as these 

increased alveolar retention by more than 10 percent. For variations to the individual characteristic 

inputs (Table 3), the choice of airway morphometry with the human stochastic lung model resulted 

in a lower retention when compared to the symmetric lung model. The age-specific symmetric lung 

model for a three year old resulted in lower mass retained at 0.16 mg because of lower intake 
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(functional residual capacity, upper respiratory tract volume, and VT) compared to the adult male 

default baseline condition. Thus, the Yeh/Schum symmetric model provided a conservative estimate 

of nanomaterial particle dosimetry. Nasal and oral breathing scenario did not significantly affect the 

results and was set to the baseline of oronasal breathing. Increasing and decreasing the default 

alveolar-interstitial rate constants did not significantly affect the result as indicated by the sensitivity 

percent in Table 3. The alveolar-interstitial rate constants were set to the default values and the lung 

model to symmetric to further calculate alveolar mass retained per alveolar surface area. 

For the exposure scenario inputs evaluated (Table 3), the correlation between alveolar mass 

retained and aerosol concentration was linear—the amount retained in the alveolar region changed 

linearly by one order of magnitude as the exposure aerosol concentration (and thereby the intake) 

was increased or decreased by one order of magnitude, yielding a sensitivity of 100%. Using resting 

or heavy exercise breathing pattern resulted in a sensitivity of approximately 100 percent, indicating 

alveolar mass retained changed almost linearly with minute ventilation (breathing frequency by VT). 

To further calculate alveolar mass retained per alveolar surface area, the breathing scenario was set 

to light exercise based on the assumption that this was the most realistic for a full working lifetime. 

The aerosol concentration of 1 mg/m
3
 was taken as a conservative estimate of potential worker 

exposure. 

Particle property input changes to particle diameter, size GSD, and aspect ratio 

(length:diameter) did not result in linear changes to output alveolar mass retention as observed in 

the sensitivity % column in Table 3. A particle size of 20 nm resulted in maximum alveolar mass 

retained (1.51 mg) for diameters between 5-100 nm and was a ~24% change increase in output 

compared to baseline 40 nm size. A GSD value of 1 (monodisperse size distribution) yielded a 

higher mass amount retained, but it was only 9.08 % more than the baseline size GSD value of 1.25 
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and did not meet the sensitivity analysis requirements. All other input changes for diameter and 

GSD lowered the alveolar mass retained as compared to the baseline settings. One report on TiO2 

particles listed a GSD of 1.66 (Hameri et al. 2009) and another report on Ag NPs listed GSD values 

of 4.63-6.3 (Park et al. 2009). Although a higher size GSD value is expected for realistic size 

distribution of nanomaterials, this parameter was set to 1.25 as a conservative estimate increasing 

alveolar retention. Changes to the aspect ratio input at constant aerosol concentration and minute 

ventilation lowered the alveolar mass retained compared to the baseline (aspect ratio 1 in Table 3). 

Only an aspect ratio of 20 slightly increased the alveolar mass retained. The sensitively % to the 

aspect ratio parameter was low. 

Concentrations recommended for in vitro testing: Results of the deposition modeling are 

presented as a function of material characteristics for the two exposure scenarios of interest in 

Figure 2. Since the MPPD alveolar mass retention is linearly proportional to the inputted aerosol 

concentration, mass per lung surface area per inputted aerosol concentration versus particle 

diameter were plotted. The alveolar retention per surface area for silver and TiO2 spherical 

nanoparticles for a full working lifetime was highest for 20 nm diameter particles at 48.9 µg/cm
2
 

based on an exposure aerosol concentration of 1 mg/m
3
 (Figure 2A). Relative to this peak lung 

surface concentration, the amount decreased to 20.3 µg/cm
2
 as size was increased to 100 nm and 

decreased to 25.1 µg/cm
2 
for 5 nm particles. For the 12-, 96- and 384-well plates used by the 

different assay contractors, the peak lung surface concentration equates to 186 [i.e., 48.9 µg/cm
2 
x 

(3.8 cm
2
/1 mL)], 78.2, and 54.8 µg/mL, respectively. These amounts for a full working lifetime lie 

within the range of the highest in vitro assay concentrations tested in the literature for Ag 

nanoparticles and TiO2 nanoparticles on human, rat, and mouse cell lines. The highest amount 

tested for Ag NPs ranges from 1.6 – 500 µg/mL, whereas for TiO2 nanoparticles the high-side range 
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is 100-1000 µg/mL or 20-520 µg/cm
2
 (see Supplemental Material, Tables S1, S2). Most of the Ag 

NPs concentrations tested fall within 50-400 µg/mL, whereas the TiO2 NPs fall within 100-250 

µg/mL. Note that since the MPPD model uses a low estimate of alveolar surface area, a more 

realistic estimate would result in lower alveolar mass retained per surface area (by approximately 

one order of magnitude), which would correspond to a lower in vitro concentration for a given 

exposure duration. For a full working lifetime exposure duration at 0.1 mg/m
3
, the peak lung 

surface concentration was 4.9 µg/cm
2
 (for particle diameter of 20 nm) and the range was 2.0-4.9 

µg/cm
2 
for particle diameters 5-100 nm (Figure 2A). Since alveolar retention is directly proportional 

to aerosol concentration, reducing the input aerosol concentration by a factor of 10, results in a 

linear reduction of the calculated well plate concentration (µg/mL) by a factor of 10. The calculated 

well plate concentration for a full working lifetime is similar to the low range (1.6 to 10.8 µg/mL) of 

the highest concentrations tested using in vitro assays for Ag nanoparticles, but is below the range 

tested for TiO2 NPs (see Supplemental Material, Tables S1, S2). 

The lung surface concentration for a 24-hour exposure duration at 1 mg/m
3
 aerosol 

concentration to TiO2 or Ag nanoparticles ranges from 0.061-0.15 µg/cm
2
 for particles sizes 5-100 

nm (Figure 2A). This range is lower by more than two orders of magnitude than the range found for 

a full working lifetime (Figure 2A). The peak lung surface concentration equates to 0.570, 0.240, 

and 0.168 µg/mL for the 12-, 96- and 384-well plates, respectively. From the literature, the lowest 

amount tested for Ag nanoparticles ranges from 0.108-25 µg/mL, whereas for TiO2 nanoparticles 

the range was 0.002-10 µg/mL or 0.0052-5 µg/cm
2
 (see Supplemental Material, Tables S1, S2). For 

24 hours exposure duration, the alveolar surface concentrations range calculated using the MPPD 

model fell within the range (closer to the lower end) of lowest in vitro concentrations tested. The 

literature concentrations thus are similar to the lower bound assay test concentrations derived using 
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the estimated lung retention after 24 hours of exposure. Each of the studies had a set exposure 

duration ranging from 1-144 hours for Ag nanoparticles and from minutes to 24 hours to days for 

TiO2 nanoparticles (see Supplemental Material, Tables S1, S2). Re-running all the baseline settings 

for 20 nm particles for an exposure duration of 24 hours would require a very high aerosol 

concentration of ~ 330 mg/m
3
 to result in a similar peak alveolar surface concentration (of ~ 48.9 

µg/cm
2
) for TiO2 and Ag nanoparticles. 

The alveolar mass retention per surface area for CNTs (with length to diameter aspect ratio 

of 167) for a full working lifetime exposure to 1 mg/m
3
 aerosol concentration ranges from 12.4-46.5 

µg/cm
2
 (Figure 2B), similar to the range for spherical particles. As CNT diameter decreases from 

100 nm, the mass retained per surface area increases to a maximum of 46.5 µg/cm
2
 for 5 nm 

diameter nanotubes. The highest amount tested in vitro for CNTs ranges from 50 – 1000 µg/mL 

(see Supplemental Material, Table S3). Most of the CNT concentrations tested fall within 50-400 

µg/mL. For the more realistic aspect ratios of 4 and 10, there is a peak mass per surface area 

concentration at 40 and ~25 nm, respectively (Figure 2B). This peak concentration decreases with 

increasing diameter (Figure 2B). Based on the literature, it is possible that the CNTs will form 

aggregates of larger diameter and lower aspect ratios (Baron et al. 2008). Particles having aspect 

ratios ~20 were found to have maximum deposition fraction in the alveolar region using the model. 

For the 2, 4, and 10 aspect ratios, the mass per surface area retained for diameters greater than 40 

nm follows a similar trend. The lung surface concentration of aspect ratio 2 is similar to the trend 

for spherical particles (Figure 2A) at the same aerosol concentration and exposure duration. 

Applications of approach: The approach taken here was a simple screening-level 

assessment that attempts to utilize the latest nanomaterial quantitative aerosol level data in 

occupational settings to determine concentrations that may deposit and be retained deep in the 
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human respiratory tract. The methodology used and alveolar retention results obtained here can be 

generally applied to inform in vitro study designs, which include other NM types. Wherever 

possible, conservative MPPD input parameters were selected so that results would indicate a higher 

alveolar retention, though we have attempted to choose realistic inputs as well. Our results indicate 

that a full lifetime occupational exposure to a concentration of 1 mg/m
3
 (one order of magnitude 

higher than what has typically been reported, Table 1) is required to reach the highest 

concentrations currently being tested in vitro in most studies (see Supplemental Material, Tables S1, 

S2, and S3). Since in vitro studies use different cell culture containers, in order to convert the lung 

surface concentrations provided here, the specific well bottom surface area and medium volume 

presented to each well are required. 

Note that we are comparing lung surface concentrations to concentrations being tested in a 

range of cell types and would expect only a small percentage of particles to reach cells in other 

organs of the body following absorption into the bloodstream (Figure 1). Nevertheless, retention of 

nanoparticles in the deep lung alveolar region is of importance as these particles can potentially 

quickly be absorbed into the bloodstream. Such a phase of rapid absorption is observed immediately 

after inhalation, even with relatively insoluble materials (ICRP 1994). Recently, researchers have 

found that NPs having hydrodynamic diameters less than 6 nm with zwitterionic surface charge can 

rapidly enter the bloodstream from the lung in rats, and then be subsequently cleared by the kidneys 

and that NPs smaller than 34 nm with a noncationic surface charge translocate rapidly from the lung 

to the mediastinal lymph nodes (Choi et al. 2010). However, for the case of Technetium–

radiolabeled 100 nm, 35 nm and 4-20 nm diameter carbon particles, no significant systemic 

translocation of particles has been observed in humans (Mills et al. 2006; Moller et al. 2008; 

Wiebert et al. 2006). Gold NPs (5-8 nm) have been found at low fraction (0.03 to 0.06% of lung 

concentration) in the blood of rats from 1 to 7 days post-inhalation (Takenaka et al. 2006). The type 

Page 20 of 34



21 

 

and amount of surface charge or coating may be a key factor for translocation of particles and needs 

to be evaluated. There is also a potential for larger NM mass amounts per lung surface area to be 

deposited in the tracheobronchial (TB) region. All airway surfaces may not receive the same 

amount of deposited particles and localized “hot spots” for deposition in the vicinity of airway 

bifurcations have been predicted (up to 100-1000 times higher than the average mass per surface 

area for particles > 10 nm) using mathematical modeling techniques (Farkas et al. 2006; U.S. EPA. 

2009). However, mass retained in this region was not considered herein since a large portion of the 

particles deposited are assumed to be cleared within 24-48 hours by action of the mucociliary 

escalator (U.S. EPA. 2009). Potential future work will be to consider GI tract exposure to 

nanoparticles cleared from the TB region as it may be significant for aggregated NPs at heavy 

exercise breathing conditions.   

Limitations of approach: There remain a number of limitations in estimating 

concentrations to test in vitro from the latest available nanoparticle aerosol level data in 

occupational settings. The instrumentation technology to measure spherical NPs typically provide 

non-specific particle counts over a broad size range. For example, the SMPS provides particles 

counts in a size range of 2.5-1000 nm, whereas the CPC used across a number of studies (Table 1) 

measures particles in the size range of 10-1000 nm. The particle counts become increasingly 

insensitive to particles sizes approaching the lower limit of detection (Maynard and Aitken 2007). 

Measurements for non-spherical particles such as CNTs may not be reliable and may need to be 

corrected since these instruments are designed to count spherical particles. Additionally, in order to 

compare particle number concentration for the same type of materials across different occupational 

settings or manufacturing processes, the FMPS and SMPS data reported needs to be divided by the 

number of channels to normalize it. The instrument data is not always normalized and is thus may 

be reported as a higher count over a particle size distribution than what actually occurs. It is not 
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currently possible to distinguish between nanoparticles, aggregates of the same compounds, 

aggregates of a mixture of particles, dust, and other airborne particle types. Nanoparticles often can 

agglomerate in air, which is why results for potentially more realistic sizes larger than 100 nm 

(Figure 2A, 2B) are provided. Instruments such as the Universal NanoParticle Analyzer (UNPA), 

which utilize a CPC, a Differential Mobility Analyzer (DMA), and a Nanoparticle Surface Area 

Monitor (NSAM), are being developed to determine the primary particle size and measure the 

number, surface area, and volume distributions of gas-borne NP agglomerates (Wang et al. 2010). 

In order to distinguish nanoparticles from background particles, real-time instrumentation 

measurements as well as qualitative analysis by electron microscopy are required (Ono-Ogasawara 

et al. 2009). Also, chemical analysis is necessary for quantitatively assessing exposure to 

nanomaterials at facilities with high levels of background NPs. Models are being developed to 

predict the change in nanoparticle number concentration for a defined source and a defined 

environment based on a given background aerosol concentration (Seipenbusch et al. 2008). The NPs 

do not reach the receptor in their original size as an aerosol, but change their size and number 

concentration by coagulation either within the same type of materials or by interaction with a 

background aerosol (Seipenbusch et al. 2008). 

We have provided MPPD results assuming no changes to the original aerosol concentration 

and have taken the reported size of the particles as the size to simulate. If particles have a tendency 

to aggregate and agglomerate above an aggregate size of 100 nm, the amount deposited and retained 

in different regions of the lung will be less (Figure 2A, 2B). In the case of SWCNTs, large 

aggregates more than 100 micrometers in diameter can form by diffusion and van der Waals 

interactions between nanotubes in air or in aqueous solutions (Mutlu et al. 2010). Other drawbacks 

present based on the method used are limitations with the MPPD model including a low estimate of 

alveolar surface area. Distinctions between nanomaterial types cannot be made currently based on 
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NM physicochemical characteristics. The only input that can be made in the latest version of the 

model is length to diameter aspect ratio for cylindrical particles. The clearance calculations in the 

model are based on experimental data for spherical particles and fibers with elongated structures 

may have different clearance kinetics. Nanomaterials have unique physicochemical characteristics 

that may affect their deposition, retention and toxicity. These include particle shape and shape 

distribution, large surface area to volume ratio, chemical composition and crystalline form, surface 

composition/coating, and surface charge. There is a need to understand which physicochemical 

characteristics most affect the deposition and alveolar retention of nanoparticles and to further 

incorporate these key parameters into the model. 

Another limitation in the approach may be the conversion of lung surface concentrations to 

in vitro test concentrations, assuming that the nanomaterials will quickly (relative to the duration of 

the assay) settle onto the cells at the bottom of the well plate. If the particle transport (diffusion, 

sedimentation) time is slower than the in vitro assay testing time (which could possibly be the case 

for particle agglomerates depending on their mass, size and density) (Hinderliter et al. 2010), then 

the localized NM concentrations near the cells at the bottom of the well may be lower than what we 

estimate. A recently developed computational model of particokinetics (sedimentation, diffusion) 

and target cell dosimetry for in vitro systems addresses this issue (Hinderliter et al. 2010) and could 

be used to calculate dose rates and target cell doses to compare to the total assay exposure time. 

Further, bioactivity profiles attained for nanomaterials would need to take the localized 

concentration into account.  

 

CONCLUSIONS 
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          Consideration of potential exposures during design of in vitro toxicity tests would improve 

interpretation of hazard screening results for use in risk assessment. The methodology described 

here is a first step toward improving selection of nanomaterial concentrations to test in vitro based 

on real-world inhalation exposure potential. The results obtained can be generally applied to other 

in vitro study designs and for other nanomaterial types. The approach here reveals that current high 

range in vitro testing concentrations being utilized are similar to predicted lung surface area 

concentrations based on occupational setting inhalation exposure to nanomaterials of a high aerosol 

concentration over the course of a full working lifetime. This methodology can be improved by 

better measurements of nanomaterials in occupational settings, addition of particle property input 

parameters to the MPPD model, and considerations of delivered dose to cells.
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Table 1. Nanomaterial exposure concentrations in lab and manufacturing sites. Abbreviations: 

CPC, Condensation Particle Counter; SMPS, Scanning Mobility Particle Sizer; FMPS, Fast 

Mobility Particle Sizer; REL, Recommended exposure limit; PEL, Permissible exposure limit; 

OEL, Occupational exposure limit. 

NM Highest 

particle 

count 

(#/cm^3)  

Mnfg. 

/ Lab  

Particle 

size 

(nm) 

Calculated Mass 

concentration 

(mg/m^3)  

Instrument 

used for 

Detection 

Reference  

Ag NPs 72900 Mnfg.  35  0.02  CPC (Methner et al. 2010a; 

Methner et al. 2010b) 

1.102e7 (over 

55 min) 

Mnfg.  76  0.46 (over 1 min) SMPS (Park et al. 2009) 

7000  Lab  150  0.12 FMPS (Tsai et al. 2009) 

995000 (over 

15-30 min) 

Mnfg. 10 0.005 

0.094 (over full work 

shift) 

[0.01 (OSHA PEL—

airborne silver)] 

FMPS 

Personal filter 

sample 

(Miller et al. 2010) 

MWCNTs 

 

35800 R&D 

Lab 

20 nm diam., 

0.5 µm length  

0.01  CPC (Methner et al. 2010a; 

Methner et al. 2010b)  

-  -  -  [0.05 (researcher 

suggested OEL)]  

- (Pauluhn 2010) 

75000 – 

during metal 

catalyst 

preparation 

Mnfg. -  

7 sites 

25 nm diam., 

No reported 

length 

0.037 

0.32 

SMPS 

Personal air 

(Lee et al. 2010) 

CNTs 7000 – 

 no detectable 

CNTs or 

bundles 

Lab  10 and 100 

diam. 

0 FMPS and CPC (Bello et al. 2008)  

5000000 

(CNT carbon 

composites – 

 no detectable 

CNTs or 

bundles) 

R&D 

Lab 

- 0 FMPS (Bello et al. 2009) 

- - - 0.007 (draft REL for 

elemental carbon) 

- (NIOSH 2010) 

TiO2 NPs 111300 Mnfg.  40  0.015  CPC (Methner et al. 2010a; 

Methner et al. 2010b)  

- -  - 0.1 (draft REL) - (NIOSH 2005) 

140000 Mnfg. 16  0.001 SMPS (Hameri et al. 2009)  
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Table 2. MPPD baseline settings. 

MPPD baseline input categories Baseline input settings 

A) Individual characteristics (Airway 

morphometry & 

Deposition/clearance) 

Human Species; Yeh-Schum Symmetric Single Path lung model; 

FRC=3300 ml; URT Volume=50 ml; 

 

Tracheal Mucous Velocity=5.5 mm/min; Fast Human Clearance 

Rate=0.02 days-1; Medium Human Clearance Rate=0.001 days-1; 

Slow Human Clearance Rate=0.0001 days-1; Lymph Node Human 

Clearance Rate=0.00002 days-1; 

B) Exposure scenario: Constant 

exposure 

Acceleration of Gravity=981.0 cm/s2; Body Orientation=Upright; 

Aerosol Concentration=0.1 mg/m3; Breathing Frequency=20 per 

minute; Tidal Volume=1250 ml; Inspiratory Fraction=0.5; Pause 

Fraction=0; Breathing Scenario=Oronasal-Mouth Breather; 

Number of Hours Per Day=24; Number of Days Per Week=1; 

Number of Weeks=1; Max. Post-Exposure Days=0 

C) Particle properties Density=4 g/cm3; Diameter=0.04 µm; CMD checked; 

Nanoparticle Model checked; Inhalability Adjusment not checked; 

GSD(diam.)=1.25 
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Table 3. MPPD sensitivity analysis 

MPPD 

input 

category 

Altered input setting 

 

Output  

Alveolar 

mass 

retained 

(mg) 

% 

Change 

in output 

% 

Change 

in input 

Sensitivity 

% 

Individual 

characteristics 
Human, Stochastic Lung model:         

                                                  1
st

 size percentile                 

                                                60
th

 size percentile 

 

0.81 -34.1 

 

- 

 

- 

1.01 -17.2 

 

- 

 

- 

Age-specific Symmetric model:   

                                                     3 year old child 0.16 -87.1 - - 

 Clearance rates:              

   0.1 * default alveolar-interstitial rate constants  

                                      ½ * default rate constants 

                                   1.5 * default rate constants 

                                       2 * default rate constants   

                                     10 * default rate constants  

 

1.27 

 

3.8 

 

-90 

 

-4.18 

1.25 2.0 -50 -4.09 

1.20 -2.0 50 -3.92 

1.18 -3.8 100 -3.76 

0.95 -23.0 900 -2.50 

Exposure 

Scenario 

Aerosol Concentration:                       

                                                           0.01 mg/m3     

                                                                1 mg/m3  

                                                              10 mg/m3 

 

0.12 

 

-90.0 -90 100 

12.2 898 900 99.7 

122.3 9900 9900 100 

Breathing pattern: 

                   Resting, 12 breaths/min, 625 mL V
T
 

     Heavy exercise, 26 breaths/min, 1923 mL V
T
 

 

0.32 

 

-74.1 -70 106 

2.30 88.0 100 88.0 

Breathing scenario:                                      

                                                                     Nasal 

                                                                       Oral 

 

1.20 

 

-2.1 - - 

1.25 2.0 - - 

Particle 

Properties 

 

Diameter:                                                       

                                                                      5 nm 

                                                                    20 nm 

                                                                    50 nm 

                                                                    70 nm 

                                                                  100 nm 

 

0.81 -33.9 -87.5 38.7 

1.51 23.5 -50 -46.9 

1.07 -12.7 25 -50.7 

0.85 -30.7 75 -41.0 

0.65 -46.6 150 -31.1 

GSD: 

                                                                            1 

                                                                         1.6 

                                                                            2 

                                                                         2.8   

                                                                            4 

 

1.33 9.08 -20 -45.4 

0.90 -26.7 28.0 -95.5 

0.60 -51.2 60 -85.3 

0.68 -44.3 124 -35.7 

0.12 -90.1 220 -41.0 

Aspect Ratio (Length:Diam.):  

                               [Baseline] 1 (20 nm : 20 nm)                 

                                                 4 (80 nm : 20 nm)                 

                                             20 (400 nm : 20 nm)                 

                                              100 (2 µm : 20 nm)                 

                                            500 (10 µm : 20 nm) 

                                          1000 (20 µm : 20 nm) 

 

1.54 0 0 - 

1.26 -18.3 300 -6.09 

1.56 1.69 1900 0.09 

1.12 -27.3 9900 -0.28 

0.61 -60.1 49900 -0.12 

0.54 -65.0 99900 -0.07 
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Figure Legends 

Figure 1. General approach for recommending in vitro testing levels. Exposure to NMs from 

occupational setting indoor air via the inhalation route resulting in respiratory tract uptake is 

considered. Estimated exposure potential is converted to levels for  nanomaterial testing in HTS 

cellular assays. 

Figure 2. MPPD model results of alveolar mass retained per alveolar surface area per inputted 

aerosol concentration versus particle diameter in human lungs for TiO2 or Ag nanoparticles for 

an exposure duration of (A) 45 years (full working lifetime) and 24 hours. (B) Alveolar mass 

retained per alveolar surface area per aerosol concentration in human lungs after 45 years of 

exposure duration to CNTs with aspect ratio of 167, 10, 4, and 2. Both (A) and (B) are based on 

light exercise breathing pattern. The curves are to guide the eye. 
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Figure 1. General approach for recommending in vitro testing levels. Exposure to NMs from occupational 
setting indoor air via the inhalation route resulting in respiratory tract uptake is considered. Estimated 

exposure potential is converted to levels for  nanomaterial testing in HTS cellular assays.  
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Figure 2. MPPD model results of alveolar mass retained per alveolar surface area per inputted aerosol 
concentration versus particle diameter in human lungs for TiO2 or Ag nanoparticles for an exposure duration 
of (A) 45 years (full working lifetime) and 24 hours. (B) Alveolar mass retained per alveolar surface area per 
aerosol concentration in human lungs after 45 years of exposure duration to CNTs with aspect ratio of 167, 
10, 4, and 2. Both (A) and (B) are based on light exercise breathing pattern. The curves are to guide the 

eye.  
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