The NNN Newsletter

Nanomanufacturing Summit 2011 Provides Focus on Commercialization, Manufacturing Innovations, and Emerging Research

The Nanomanufacturing Summit 2011, held this past week in Boston, provided some high level discussions with focus on, amongst other topics, nanotechnology commercialization, translational research emerging from academic research centers, and manufacturing innovations. In the first event wherein the NNN has teamed with the NanoBusiness Commercialization Association, key topics also included nanoEHS, Patents and Intellectual Property, Regulation, Nanomedicine, Green Manufacturing, and Commercialization strategies and successes. With a broad emphasis on the success of investments made by the Federal Government in the first 10 years of the National Nanotechnology Initiative (NNI), keynote speakers Sally Tinkle, Acting Director of the National Nanotechnology Coordination Office (NNCO), and Mihail Roco, Senior Advisor for Nanotechnology at the National Science Foundation (NSF), provided information regarding the formation of strategic plans within the NNI, including the recently published EHS strategy, which was developed through a series of workshops and public comment. Reiterating the increased emphasis on effective technology transfer from fundamental research to product commercialization, and nanomanufacturing, the growing trends impacting future economic development and job creations were also cited, with estimates that nanotechnology commercialization will create 6 million jobs by 2015, with 2 million of these located inside the U.S.

More...
Regards,
Jeff Morse, Managing Director,
National Nanomanufacturing Network

Learn More about the UMass Amherst Nanotechnology Center Receives $20 Million Renewal of Federal Grant to Boost Advanced Manufacturing, Economic Growth

AMHERST, Mass. — The University of Massachusetts Amherst has received a five-year, $20 million grant from the National Science Foundation (NSF) to support a national research center on nanomanufacturing. The grant will fund the university's Center for Hierarchical Manufacturing (CHM).

A signature CHM effort is focused on roll-to-roll nanoscale processing of flexible electronics and high technology devices such as solar cells, cell phone displays, batteries and sensors. Roll-to-roll processing is similar to how photographic film moves through a camera from one spindle to another or how newspapers are printed, but with chemical and physical processing in between. More...

SRC and National Science Foundation Award $20 Million to Fund U.S. University Research on Nanoelectronics for 2020 and Beyond

Effects
View Full Calendar

Upcoming Calls
SPIE Defense, Security, and Sensing 2012
Submissions until October 10
MRS Spring Meeting 2012
- submissions accepted until: November 1, 2011
SPIE Photonics Europe 2012
Submissions until November 7
View All Calls

Recently Published From Our Affiliates
Hydrogen Bond Assisted Assembly of Well-Ordered Polyhedral Oligomeric Silsesquioxane-Block Copolymer Composites Macromolecules 44(17):6793-6799
RESEARCH TRIANGLE PARK, N.C. - Semiconductor Research Corporation (SRC), the world’s leading university-research consortium for semiconductors and related technologies, joined today with the National Science Foundation (NSF) to fund $20 million for 12 four-year grants on nanoelectronics research.

These 12 interdisciplinary research teams at 24 participating U.S. universities will contribute to the goal of discovering a new switching mechanism using nanoelectronic innovations as a replacement for today’s transistor—the foundational building block of computing technology that has driven not only the semiconductor industry, but the country’s IT-driven economy for decades. More...

Stabilized Nanostructure Composites for Nonvolatile Memory Device Applications

New approaches to nonvolatile memory devices have previously been demonstrated by charge trapping on metallic nanoparticles (NPs) embedded in organic layers. Devices based on this concept have shown that the memory capability of the device is affected by the distribution of the NPs. In the case of gold nanoparticles (AuNPs) that are frequently embedded in the organic layer or on the surface, the migration of the AuNPs during operation results in limited stability and device lifetime. Furthermore, the origin of the AuNP molecular absorption and photodesorption in pristine and functionalized large-area graphene layers

Nanotechnology 22(35)

Tunable metallic-like conductivity in microbial nanowire networks

Nature Nanotechnology 6(9):573-579

Affiliated Centers

[Images of affiliated centers]

www.internano.org/newsletters/NNN_newsletter_4-9_Sept11.html
charging effects is not completely understood. One scheme to better stabilize the AuNPs while further ensuring effective charging conductive paths and simultaneously providing a barrier to discharging is the use immobilized AuNPs on semiconducting reduced graphene oxide (rGO) nanosheets.

Read more on InterNano

Subscribe / Unsubscribe from this list.

Our mailing address is:
The National Nanomanufacturing Network
374 Lederle Graduate Research Center
710 N. Pleasant Street
University of Massachusetts
Amherst, MA 01003

Our email address is:
nnn@nanomanufacturing.org

Our phone number is:
(413) 577-0570

Copyright (C) 2011 The National Nanomanufacturing Network All rights reserved.

Supported by the National Science Foundation under Grant No. CMMI-0531171.