U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Cancer Nanotechnology – Opportunities and Challenges – View from the NCI Alliance for Nanotechnology in Cancer

Nanobusiness Alliance Meeting September 26, Boston, MA

Piotr Grodzinski, Ph.D. Office of Cancer Nanotechnology Research, NCI

Burden of Cancer

Nanotechnology

in Cancer

- 556,900 American will die of cancer this year

-1,372,900 Americans will be diagnosed with cancer this year

Cancer Nanotechnology: The **Opportunity**

- Combine power of innovation in nano-materials and cancer biology to develop new solutions in cancer
 - Detect Disease Before Health Has Deteriorated
 - Sensors
 - Imaging

Nanotechnology

- **Deliver Therapeutics**
 - Local delivery
 - Improved efficacy
 - Post-therapy monitoring
 - Develop Research Tools to Enhance Understanding of the Disease

Gold nanoshell

Dendrimer

3

In-vitro assays

- High sensitivity
- Development of modular diagnostics based on bodily fluids, such as blood, serum, cerebrospinal, urine, stools, or saliva
- Techniques to monitor and capture circulating tumor cells from blood
- Multiplexing capability to monitor several signatures at the same time
- Multifunctional capabilities one platform capable of detecting nucleic acids and proteins
- Imaging

Nanotechnology

- Improved spatial and temporal resolution
- Capability to probe tumor microenvironment information on tumor mass and its biochemical signatures
- Theranostic constructs allow for tumor recognition and subsequent treatment – image-guided therapy
- Intra-operative techniques to monitor margins of surgically removed tissue in real-time

Nano-therapy Strategies

in Cancer

NCI Alliance for Nanotechnology in Cancer (ANC) - Program Objectives

The ANC program was designed to develop research capabilities for multi-disciplinary team research, with the goal of advancing prevention, diagnostic and/or treatment efforts.

pre-clinical

Challenge areas:

NCI Alliance for Nanotechnology

research discovery

- Early diagnosis using in vitro assays and devices or in vivo imaging techniques
- Multifunctional nano-therapeutics and post-therapy monitoring tools
- Devices and techniques for cancer prevention and control

clinical

calls for the most promising strategies discovered and developed by ANC grantees to be handed off to for-profit partners for effective clinical translation and commercial development.

The ANC's development model

Focus on cancers with low survival rates such as brain, lung, pancreas, and ovarian cancer

5 year Survival for Different Cancers Rationale Behind Tumor Type Selection

CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300

Focus program on cancers with low survival rates such as brain, lung, pancreas, and ovarian cancer. These were also first four cancers sequenced by TCGA.

GORDON RESEARCH CONFERENCES Colby College CANCER NANOTECHNOLOGY From Basic Concepts to Clinical Applications Chair: Piotr Grodzinski July 17-22, 2011

IGuar

Translating to the Clinic

- Value proposition of nanotechnology in cancer why would oncologist care?
 - defining compelling applications
- Building research community
- Discovery research OK, but we want to benefit the patient translate
- Translation is hard and expensive
 - it costs ~\$2M to scale-up and stabilize materials manufacturing to be ready for IND application
 - limited capital available before reaching clinical trial stage infamous 'valley-of-death' for start-up companies
 - re-defining roles of academia, industry, and government in the continuum of funding and performing technology development

NCI Alliance or engaging larger pharmaceutical and biotech companies

Current Industry Trends in R&D Development and Commercialization

Outsourcing, In- and out-licensing Mergers & Acquisitions

Pharma/ Biotech

Nanotechnology

in Cancer

NCI Nanotechnology Alliance Commercial Partners

Nanotherapeutics Approved for Oncological Applications

- Abraxane[®] (albumin-bound paclitaxel, Abraxis BioSciences). FDA approval in 2005 for metastatic breast cancer
- <u>Liposomal:</u>
 - Doxil[®] (liposomal-PEG doxorubicin; Ortho Biotech/ Schering-Plough). FDA approval in 1995 for HIV-related Kaposi's sarcoma, metastatic breast cancer, metastatic ovarian cancer
 - DaunoXome[®] (liposomal daunorubicin; Gilead Sciences/ Diatos). FDA approval in 1996 for HIV-related Kaposi's sarcoma
 - Myocet[®] (liposomal doxorubicin; Zeneus). FDA approval is pending for metastatic breast cancer
- <u>Polymeric:</u>

NCI Alliance for Nanotechnology

in Cancer

- Genexol-PM[®] (Methoxy-PEG-poly(D,L-lactide) taxol; Samyang, Korea). Approved in S. Korea for metastatic breast cancer. Phase II for pancreatic cancer in the US
- Oncaspar[®] (PEG–L-asparaginase; Enzon). FDA approval in 2006 for Acute Lymphoblastic Leukemia

Several companies are close to filing IND applications with FDA for nanotechnology products

Nanotechnology Characterization Laboratory: Serving the Community

Forward Strategies

Center for Strategic Scientific Initiatives

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

NCI Alliance for Nanotechnology in Cancer

14

- Early diagnosis of cancer in pre-metastatic stage:
 - point-of-care nano-devices for broad medical applications including cancer using unprocessed bodily fluids, with multiplex capabilities and rapid analysis;
 - diagnostic and post-therapy monitoring nano-devices for interrogation of circulating tumor cells;
- Successful delivery of therapies based on siRNA and other difficult to deliver molecules;
- Novel nanoparticle-based chemotherapeutic formulations with lower toxicity and higher efficacy;
- Theranostic constructs for diagnosis and subsequent localized therapy;
- Effective diagnosis and delivery of therapies to brain, ovary, and pancreas.

Office of Cancer Nanotechnology Research

Dorothy Farrell

Nicholas Panaro

Krzysztof Ptak

Sara Hook

Sandra Chapman

George Hinkal

Consultants: Subhas Malghan – FDA Uma Prabhakar – formerly J&J

