

Nanoscaled Biocatalysts and Self-Assembling Protein Polymers

Jin Kim Montclare

Polytechnic Institute of NYU Department of Chemical and Biological Sciences and SUNY Downstate Medical Center Department of Biochemistry Biomedical Engineering

IGERT MassNanoTech UMASS Amherst March 4, 2010

Protein Engineering and Molecular Design

Control reactivity for

target substrate

Enzymes for Polymer Modification

Montclare *et. al. JACS* **2009** *131, 15711,* Baker & Montclare *Polymer Biocatalysts and Biomaterials,* **2010**.

self-assembly Biosynthesis of protein materials

Montclare *et. al. Biotech Bioeng* **2006** *94,* 921; Montclare *et. al. BMCL* **2007** 17, 5907; Montclare *et. al. BMCL* **2009** 19, 5449; Voloshchuk & Montclare *MolBioSys* **2010** 6, 65. Montclare et. al. Polymer Biocatalysts and Biomaterials, **2008**; Montclare et. al. Polymers Adv. Tech. **2008** 19, 454; Montclare et. al. ChemBioChem **2009** 10, 2733; Montclare et al. Biochemistry **2009** 48, 8559; Montclare et. al. **2010** MolBioSys under revision.

Protein Interactions: Extracellular Matrix

Question: Inspired by extracellular matrix proteins, can we engineer novel biomaterials with defined structural properties?

Biopolymer Synthesis

Chain length, sequence and stereochemistry

Mono-dispersity

I. Chen and B. Gao Anal. Chem., 1997, 69, 4399

Krejchi et.al. *Science*, 1994, **265**, 1427

Well defined secondary structures

Conventional Polymer vs. Protein Polymer

Polymers: comprised of repeated monomers

Protein Polymer: comprised of motifs with a particular monomer sequence

Examples of Protein Polymers: Elastin and Helix

Elastin-elastin

Tirrell et.al. Science, 1998, 281, 389

(SADs)

Cartilage oligomeric matrix protein coiled coil (COMPcc)

- Comprised of homopentamer of coiled coils
- Hydrophobic pore 7.3 nm long and 0.2-0.6 nm diameter
- Binds the hormone 1,25-dihydroxy (vitamin D3)

Vitamin D3

Ozbeck, S., Engel, J., Stetefeld, J. EMBO J. 2002, 21, 5960.

Elastin polypeptide

 Comprised of pentapeptide repeat (GVPXP)_n
 Exhibits lower critical solution temperature (LCST) depends on identity of X and number of repeats

Urry, D.W. and Parker, T.M. J. Muscle Res Cell Mot. 2002, 23, 543.

Question: Does orientation of blocks and number of blocks influence assembly and structure?

A Modular Approach

 $= A_2 T A_{6-7}$

added a linker as distance to prevent interference on COMPcc stability from direct fusion

Single-Alanine Mutants of COMPcc

DLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASG

S. Gunasekar, M. Asnani, C. Limbad, W. Hom

Characterization via CD

COMPcc (black), L37A (red), T40A (grey), L44A (orange), V47A (yellow), L51A (pink), Q54A (purple), I58A (blue), L61A (green), V65A (light blue), and S68A (light green).

Influence of mutations on stability

	Protein	(-VitD)	(+VitD)	ΔTm	1 - 1 - 1 - 1
		Tm (°C)	Tm (°C)	(°C)	
*	wt	44.8	50.9	6.2	
\checkmark	L37A	ND	ND	ND	
٨	T40A	61.4	62.8	1.4	Stability Stability
\Rightarrow	L44A	ND	ND	ND	loss
\diamond	V47A	ND	ND	ND	
\diamond	L51A	ND	ND	ND	32 5
	Q54A	80.3	82.1	1.8	
	I58A	39.7	39.7	0	Enhanced
	L61A	65.3	66	0.7	ctobility
	V65A	86.2	79.7	-6.5	Stability
	S68A	77	77	0	
					GE

Variants L37A, L44A, V47A and L51A exhibit a complete loss in structure and stability.

S. Gunasekar, M. Asnani

6

11

Influence of mutations on oligomerization

Variants L37A, L44A, V47A and L51A are unable to form pentamers and are mostly monomeric.

Cartilage oligomeric matrix protein coiled coil (COMPcc)

- Comprised of homopentamer of coiled coils
- Hydrophobic pore 7.3 nm long and 0.2-0.6 nm diameter
- Binds the hormone 1,25-dihydroxy (vitamin D3)

Vitamin D3

Ozbeck, S., Engel, J., Stetefeld, J. EMBO J. 2002, 21, 5960.

Influence of mutations on ATR and Ccm binding

S. Gunasekar, M. Asnani

Cloning and Purification

Protein gel

Models of the block polymers with 2 SADS

EC MRGSH₆GSKPIAASA-E-LEGSELA(AT)₆AACG-C-LQA(AT)₆AVDLQPS CE SSRATA MRGSH₆GSACELA(AT)₆AACG-C-LQA(AT)₆AVDKPIAASA-E-LEGSGTGAKLN ECE 255 MRGSH₆GSKPIAASA-E-LEGSELA(AT)₆AACG-C-LQA(AT)₆AVDKPIAASA-E-LEGSGTGAKLN $E = [(VPGVG)_2VPGFG(VPGVG)_2]_5VP$

C= DLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASG

Secondary structure and stability characterization

- The orientation of fusion does make a difference on overall structure of diblocks
- The number of blocks play an important role in overall conformation and temperature dependent behavior of block polymers
- Influence of vit D on the polymer structure and assembly is dependent on block orientation and composition

J. Haghpanah, C. Yuvienco

Supramolecular assembly analysis via DLS

- EC: 2 modes where after T_t aggregate size increase; CE: more than 2 modes, polydisperse; ECE: 2 modes where after T_t, size stabilizes to 125 nm; SALS shows EC and CE form micron-sized aggregates
- Orientation and number of blocks affect supramolecular assemblies

Block Polymer Binding of ATR and Ccm via Fluorescence

CE: binds best to ATR and Ccm indicating importance of N-terminal C domain

ECE and EC: additional C-terminal E domain improves binding

J. Haghpanah, H. Barra

Binding and Release of Ccm

 CE exhibits best binding and release abilities relative to both EC and ECE

J. Haghpanah

TEM Analysis of Block Polymers: Particle-Fiber Swit

33.8-40.1 nm 26.9-29.8.1 nm 31.5-39.2 nm

- EC and ECE look to have similar features with slightly larger sizes when compared to CE, consistent with DLS
- While ECE is larger in molecular weight, the article sizes are slightly smaller than EC.

Microrheology of Block Polymers

EC: elastic, CE: viscous and ECE: viscoelastic--orientation and block number important
J. Haghpanah, R. Tu

Supramolecular assembly is dictated by SADs

The orientation and number of block influence the supramolecular assembly.

Acknowledgments

Montclare Lab: Mukta Asnani Peter James Baker Susheel Gunasekar Jennifer Haghpanah Wendy Hom Carlo Yuvienco Anita Y. Zhu David Snydacker Natalya Voloshchuck Zhiqiang Liu

Funding: Othmer Institute Unilever NSF IUCRC, NSF MRSEC, NSF MRI CRAW-MROW AFOSR Dreyfus Foundation DOE ACS/PROGRESS

Cast and Crew Downstate Medical Center

