Submicron Streptavidin Patterns for Protein Assembly

Christman, Karen L. and Requa, Michael V. and Enriquez-Rios, Vanessa D. and Ward, Sabrina C. and Bradley, Kenneth A. and Turner, Kimberly L. and Maynard, Heather D.. (2006) Submicron Streptavidin Patterns for Protein Assembly. Langmuir, 22 (17). pp. 7444-7450. ISSN 0743-7463

Full text not available from this repository. (Request a copy)

Abstract

Micron and submicron-scale features of aldehyde functionality were fabricated in polymer films by photolithography to develop a platform for protein immobilization and assembly at a biologically relevant scale. Films containing the pH-reactive polymer poly(3,3‘-diethoxypropyl methacrylate) and a photoacid generator (PAG) were patterned from 500 nm to 40 μm by exposure to 365 nm (i-line) light. Upon PAG activation and hydrolysis of acetals, aldehyde groups formed. After the films were incubated with a biotinylated aldehyde reactive probe, the X-ray photoelectron spectroscopy results were consistent with biotin being attached to the surface. The background was subsequently passivated by flood exposure and incubation with an aminooxy-terminated poly(ethylene glycol), resulting in a 98% reduction in nonspecific protein adsorption. Protein patterning and assembly was demonstrated using streptavidin, biotinylated anthrax toxin receptor-1, and the protective antigen moiety of anthrax toxin and confirmed by fluorescence microscopy and atomic force microscopy (AFM). AFM demonstrated that 500 nm protein features were achieved. Because of the abundance of biotinylated proteins, this methodology provides a platform for protein immobilization and assembly for various applications in biotechnology.

Item Type: Article
Additional Information: Reprinted with permission from "Submicron Streptavidin Patterns for Protein Assembly", Christman K et al., Langmuir, 2006, 22 (17), pp 7444–7450. Copyright 2006 American Chemical Society.
InterNano Taxonomy: Nanomanufacturing Processes > Biological Techniques > Protein assembly
Nanomanufacturing Processes > Nanopatterning/Lithography
Collections: Nanomanufacturing Research Collection
Depositing User: Moureen Kemei
Date Deposited: 26 Mar 2010 14:39
Last Modified: 26 Mar 2010 14:39
URI: http://eprints.internano.org/id/eprint/371

Actions (login required)

View Item View Item