



Nanomanufacturing Summit 2010 Lowell June 22-24, 2010

#### Engineered Nanomaterials: Linking Physicochemical Properties with Biology

by

Eugene J. Rogers<sup>1,2</sup>, Dhimiter Bello<sup>1,3</sup>, Daniel Schmidt<sup>1,4</sup>

and graduate students

Shu-Feng Hsieh and Anoop K. Pal

1-Center for High-rate Nanomanufacturing; 2-Department of Clinical Laboratory and Nutritional Sciences; 3-Department of Work Environment; 4-Department of Plastics Engineering; University of Massachusetts, Lowell, MA, USA



- Over view of the safety concern of nanomaterials
- Challenge of knowing toxicity of nanomaterials
- BOD/ROS, nano exposure and adverse health effect
- Developing a screening test to predict toxicity of nanomaterials
- Linking Physicochemical Properties with Biology



#### **The Lesson from Asbestos**





- Hansen SF, Maynard A, Baun A, Tickner JA. 2008. Late lessons from early warnings for nanotechnology. Nat Nanotechnol 3(8): 444-447.
  - "We are in danger of repeating old, potentially costly, mistakes."

#### Complexity of Nanomaterials Why Uncertainty of Nanoparticle-Biomolecule Interaction

A. Basic Categories e.g. carbon base materials, metal oxides, elemental metals, Quantum dots, complex compounds, organic polymers, etc.

*B.* Physical Characteristics e.g. morphology, diameter, length, aspect ratio, crystallinity, etc. *C.* Surface Modification e.g. surface functionalization, coating, etc.

D. Formation of Secondary Structure by Agglomeration e.g. morphology, surface charge, hydrophobicity, surface reactivity

Increasing number of possibilities for different ENM's



Physicochemical properties of nanomaterials & A The interactions between these properties cer Interaction with biomolecules & cells Distribution **Degradation** /Accumulation **Toxicity/Adverse Health Effects** 



# Challenge of Knowing Toxicity of Nanomaterials

- The link between PCs and toxicity remains poorly understood
- Robust screening approaches are still lacking
- What could be a key metric for screening test?
- How to quantify the key metric and estimate the potential toxicity?



### The Possible Mechanisms of Nanotoxicity

- Oxidative stress
- Catalytic Metal in ENMs catalyze reactive oxygen species generation toxic metal itself

#### Examples of Particle-mediated Oxygen Radical production





### The Possible Mechanisms of Nanotoxicity

- Oxidative stress
- Catalytic Metal in ENMs catalyze reactive oxygen species generation toxic metal itself
- Membrane disruption relate to oxidative stress & adsorption
- Essential nutrient or functional biomolecule depletion
- Structure alteration of functional biomolecules
- Others; immune toxicity



## Criteria of a Toxicity Screening Test

- Must be sensitive to a large number of physicochemical properties of diverse classes of ENMs that may elicit adverse effects in biological systems.
- Must be highly predictive of potential toxicity of multiple mechanisms.
- Must be relatively simple, sensitive, specific, robust, precise, low cost, exhibit low susceptibility to interferences and possess high throughput capability.
- Must be easily standardized to a highly recognizable endpoint.



#### Inhalation Toxicology International Forum for Respiratory Research

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713657711

Evaluating the Toxicity of Airborne Particulate Matter and Nanoparticles by Measuring

Potential - A Workshop Report and Consensus Statement

Jon G. Ayres <sup>a</sup>; Paul Borm <sup>b</sup>; Flemming R. Cassee <sup>c</sup>; Vincent Castranova <sup>d</sup>; Ken Donaldson <sup>e</sup>; Andy Ghio <sup>f</sup>; Roy M. Harrison <sup>g</sup>; Robert Hider <sup>h</sup>; Frank Kelly <sup>i</sup>; Ingeborg M. Kooter <sup>j</sup>; Francelyne Marano <sup>k</sup>; Robert L. Maynard <sup>i</sup>; Ian Mudway <sup>m</sup>; Andre Nel <sup>n</sup>; Constantinos Sioutas <sup>o</sup>; Steve Smith <sup>p</sup>; Armelle Baeza-Squiban <sup>k</sup>; Art Cho <sup>n</sup>; Sean Duggan <sup>q</sup>; John Froines <sup>n</sup>

<sup>a</sup> Liberty Safe Work Research Centre, Foresterhill Road, Aberdeen, Scotland, United Kingdom

"Toxicity Screening tests for new nanomaterials products are urgently needed. Whilst recognizing that oxidative stress potential may not be predictive of all possible adverse outcomes, tests based upon oxidative potential maybe an invaluable tool for initial screening and classification of the relative biohazard of such materials."

## The human study on association of particulate matter and diseases

| Title                                               | Journal         | Reference     |
|-----------------------------------------------------|-----------------|---------------|
| Associations of long- and short-term air pollution  | Occup. Environ. | Panasevich    |
| exposure with markers of inflammation and           | Med             | et al. 2009   |
| coagulation in a population sample                  |                 |               |
| Ambient Particulate Pollutants in the Ultrafine     | Circ. Res       | Araujo et al. |
| Range Promote Early Atherosclerosis and             |                 | 2008          |
| Systemic Oxidative Stress                           |                 |               |
| Effects of air pollution on the incidence of        | Heart           | Bhaskaran et  |
| myocardial infarction                               |                 | al. 2009      |
| Long-Term Exposure to Air Pollution and             | N. Engl. J. Med | Miller et     |
| Incidence of Cardiovascular Events in Women         |                 | al.2007       |
| Cardiovascular Mortality and Long-Term              | Circulation     | Pope et al.   |
| Exposure to Particulate Air Pollution               |                 | 2004          |
| Long-term exposure to traffic-related air pollution | Occup. Environ. | Yorifuji et   |
| and mortality in Shizuoka, Japan                    | Med             | al.2010       |
| Fine-Particulate Air Pollution and Life Expectancy  | N. Engl. J. Med | Pope et al.   |
| in the United States                                |                 | 2009          |



#### Oxidative Damage or ROS Generation Could Be Used as a Metric for Nanotoxicity Screening

# 2. How to quantify oxidative stress or ROS generation ?

## Assay Methods to Determine Reactive Oxygen Spices Generation

| Assay                                      | Target ROS            | Advantages                                    | Disadvantages                                             | used in<br>nano<br>study |
|--------------------------------------------|-----------------------|-----------------------------------------------|-----------------------------------------------------------|--------------------------|
| DCDHF                                      | ROS                   | Can be applied intra-<br>and extra-cellularly | Autocatalytic<br>degradation, no<br>information about ROS | $\checkmark$             |
| ESR/EPR                                    | Free radicals         | Quantitative,<br>structural information       | in virto only/proficiency<br>required                     | $\checkmark$             |
| Antioxidants Inhibition                    |                       |                                               |                                                           |                          |
| FRAS                                       | any type of ROS       | Can be applied extra-<br>cellularly           | Little information about radical species                  | $\checkmark$             |
| DTT consumption                            | any type of ROS       | Can be applied extra-<br>cellularly           |                                                           | $\checkmark$             |
| Vitamin C yellowing                        | any type of ROS       | Can be applied extra-<br>cellularly           |                                                           | $\checkmark$             |
| Chemiluminescence<br>(salicylate catalyst) | ROS, •OH and<br>ONOO− | Quantitative                                  | Limited to •OH and ONOO-                                  |                          |

Assay methods to determinate reactive oxygen spices generation

Abbreviation: ROS- reactive oxygen spices, DCHF -2',7'-dichlorofluores-cein, ESR-electron spin resonance, EPRelectron paramagnetic resonance, FRAS- ferric reducing ability of serum, DTT- The dithiothreitol assay,



#### **DCFH vs. FRAS: Comparison**



#### **DCFH Method**



**FRAS - Ferric Reducing Nanoparticles** Ability of Serum Assay Antioxidants in the serum sample **Fe**<sup>++</sup> Fe<sup>+++</sup> 2,4,6-Tripyridyl-1,3,5-Triazine (TPTZ) blue color **Decrease absorbance Oxidant** Damage

#### Standard Procedures of the FRAS Assay to Measure Oxidative Damage Induced by ENMs

- 1. Testing media blood serum
- 2. Expose blood serum to selected ENMs (10mg mL<sup>-1</sup>, 37°C, and 90 min)
- 3. Remove NPs by two step centrifugations (14,500 g for 15 min)
- 4. Measure antioxidant capacity of ENMs exposed serum by FRAS



Nanomaterials









- FRAS gives positive result in every case DCFH does
- DCFH gives negative result in every case FRAS does
- FRAS never gives a negative result when DCFH gives a positive
- FRAS detects several positive results that DCFH fails to detect

 $\rightarrow$  FRAS has greater sensitivity across the board



#### **DCFH: Dose-Response**





#### **FRAS: Dose-Response**



# Linking Physicochemical Properties with Biology



#### Standard Methods to Measure Physiochemical Properties of ENMs

#### Surface area

- N2 sorption analysis (Quantachrome Autosorb-3B, 11-point BET)
- Transition metals in bulk and water extract
  - Instrumental Neutron Activation Analysis (INAA) and ICP-MS
- Surface charge and mobility Zeta PALS
- Crystallinity- X-Ray diffraction
- Morphology TEM & FE-SEM
- Organic Carbon Modified NIOSH 5040
- PAHs EPA method 3546 & GC-MS 8270

PAH-Polycyclic aromatic hydrocarbons



#### **BOD Variations in MWCNTs**





### **BOD Variations in MWCNTs**





#### Metal Distribution in MWCNTs

| Material                     | BOD<br>(TEUs, | SSA<br>(m²/g | Fe    | Ni    | Co     | Мо    | Mn   | La   | Zn   | Cr   |
|------------------------------|---------------|--------------|-------|-------|--------|-------|------|------|------|------|
|                              | µmol/L)       | )            |       |       |        |       |      |      |      |      |
| MWCNT_A <sub>1</sub>         | 1872          | 445.5        | 424   | 50    | 2075.1 | 1182  | 12.4 | 5.3  | 109  | 67.4 |
| MWCNT_B <sub>1</sub>         | 1445          | 434.8        | 164   | 25.9  | 1150   | 714   | 3.2  | 2.4  | 15.9 | 40.2 |
| MWCNT_A <sub>2</sub>         | 129           | 153.1        | 2003  | 2946  | 28.5   | 37.1  | 20.5 | 1022 | 98.9 | 23.9 |
| MWCNT_B <sub>2</sub>         | 221           | 172.1        | 227   | 3172  | 12.7   | 20.5  | 4.7  | 270  | 24.3 | 20.4 |
| MWCNT_A <sub>3</sub>         | 89.1          | 112.5        | 1724  | 6258  | 3.6    | 6.5   | 6.4  | 109  | 54.8 | 22.2 |
| $MWCNT_B_3$                  | 134           | 119.4        | 3905  | 8863  | 115    | 46.7  | 29.8 | 427  | 18   | 98   |
| MWCNT_A <sub>4</sub>         | 77.7          | 94.9         | 1931  | 2766  | 19     | 18.6  | 26.4 | 84.1 | 65.8 | 21   |
| MWCNT_B₄                     | 144           | 135.9        | 269   | 1191  | 0.8    | 25.3  | 1.5  | 408  | 16.9 | 4.5  |
| MWCNT_A <sub>5</sub>         | 62.9          | 75.9         | 269   | 5564  | 11.9   | 19.5  | 63.4 | 31.9 | 37.8 | 51.8 |
| MWCNT_B <sub>5</sub>         | 75.0          | 77.7         | 496   | 7888  | 7.5    | 18.6  | 4.7  | 167  | 15.1 | 11.3 |
| MWCNT_B <sub>6</sub>         | 60.9          | 50.5         | 144   | 5057  | 56.4   | 341   | 1.5  | 423  | 28.3 | 4.3  |
| MWCNT_C <sub>1</sub>         | 244           | 276.1        | 9759  | 4.3   | 0.5    | 5945  | 0.6  | <0.4 | 23.3 | 1.4  |
| MWCNT_C <sub>2</sub>         | 123           | 172.3        | 14780 | 3.2   | 0.6    | 5589  | 2.6  | <0.3 | 1383 | 1    |
| MWCNT_D <sub>1</sub>         | 706           | 229.1        | 172   | 4737  | 68.9   | 112   | 5.32 | 103  | 11.8 | 9.99 |
| MWCNT_D <sub>2</sub>         | 165           | 156.1        | 0.00  | 5890  | 0.00   | 155   | 0.00 | 64.1 | 2.89 | 0.00 |
| MWCNT_D <sub>3</sub>         | 86.3          | 99.7         | 496   | 51866 | 120    | 191   | 25.8 | 20.5 | 8.55 | 33.0 |
| MWCNT-OH                     | 1491          | 585.4        | 195   | 19.5  | 1214   | 4887  | 1547 | 16.5 | 13.4 | 53.8 |
| MWCNT-COOH                   | 1498          | 444.3        | 124   | 10.4  | 644    | 349   | 1.3  | 13.4 | 6.3  | 28.9 |
| Nanoforest I (assay 1)       | 432           | 329.7        | 712   | <9.6  | <9.6   | 173   | <9.6 | <9.6 | 294  | <9.6 |
| Nanoforest I (assay 2)       | 432           | 329.7        | 277   | <8.5  | <8.5   | 61.8  | <8.5 | <8.5 | 278  | <8.5 |
| Nanoforest III               | 517           | 329.7        | 396   | 29.7  | <8.8   | 26.1  | <8.8 | <8.8 | 644  | <8.8 |
| Nano-rope (F <sub>1</sub> )  | 353           | 176.8        | 46961 | 27.8  | 1.4    | 18.3  | 1    | <1.0 | 350  | 5    |
| Nano-cloth (F <sub>2</sub> ) | 294           | 280.9        | 27    | 0.7   | 60.5   | 2455  | <0.3 | <0.3 | 8.2  | <0.3 |
| Correlation to BOD           |               |              | -0.1  | -0.3  | 0.9**  | 0.2   | 0.4  | -0.3 | -0.1 | 0.4  |
| Correlation to sBOD          |               |              | -0.02 | -0.2  | 0.8**  | -0.02 | 0.2  | -0.3 | -0.2 | 0.3  |

Fe-iron Cr-Chromium Co-Cobalt Mo-Molybdenum Mn-Maganese

## List of Standardized Biological Oxidant Damage (sBOD) by Specific Surface Area



Specific Surface Area (m<sup>2</sup> g<sup>-1</sup>)

sBOD represent BOD induced by one unit surface was calculated as degree of BOD (μmol of trolox equivalent units) generated by one unit surface area (m<sup>2</sup>) of MWCNT in 1 ml exposed serum.





Specific Surface Area (m<sup>2</sup> g<sup>-1</sup>)



#### Surface reactivity of CNTs





#### Surface reactivity of CNTs





#### **Path Forward**

#### Linking Physicochemical Properties with Biology





#### Acknowledgments

 This work was supported by the National Science Foundation as a Nanoscale Science and Engineering Centers Program (Award # NSF-0425826)



