

Measurement Challenges in Nanomanufacturing

J. Alexander Liddle
Nanofabrication Research Group

New England Nanomanufacturing Summit 2010

CNST

- Provides the measurement and fabrication infrastructure to support all phases of nanotechnology development from discovery to production.
 - Fee-for-use, state-of-the-commercial-art measurement and fabrication capabilities are provided by developing and maintaining a national shared resource, the NanoFab.
 - Beyond state-of-the-commercial-art nanoscale measurement and fabrication solutions are developed and provided using a multidisciplinary approach that involves partnering with industry, academia, and government.
- Serves as a hub to link the external nanotechnology community to the vast measurement expertise that exists within the NIST Laboratories.
- Helps to educate the next generation of nanotechnologist.

www.nist.gov/cnst

Nanomanufacturing Today

Nanomanufacturing Tomorrow

Where do we need to go?

- 193 nm immersion lithography
 - 40 nm pixels, 3 x 10⁻³ m²/s
 - 6.25 x 10¹⁴ pixels/m², 2 x 10¹⁰ pixels/s
- Letterpress
 - 40 μm pixels, 30 m²/s
 - 5 x 10⁸ pixels/m², 1.5 x 10¹⁰ pixels/s
- 10⁴ x areal throughput, 10⁶ x feature density
- \geq 2 x 10¹⁶ 40 nm pixels/s or better

How can measurement help?

Measurements for fundamental understanding

Measurements for process/quality control

Metrology Requirements

Table MET2a Metrology Technology Requirements—Near-term Years

			0./	0./			_	_		
Year of Production	2007	2008	2009	2010	2011	2012	2013	2014	2015	Driver
DRAM ½ Pitch (nm) (contacted)	65	57	50	45	40	36	32	28	25	
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	68	59	52	45	40	36	32	28	25	
MPU Physical Gate Length (nm)	25	22	20	18	16	14	13	11	10	
Microscopy										
Inline, nondestructive microscopy process resolution (nm) for P/T=0.1	0.22	0.2	0.18	0.16	0.14	0.13	0.12	0.1	0.09	MPU Gate
Microscopy capable of measurement of patterned wafers having maximum aspect ratio/diameter (nm) (DRAM contacts) [A]	16	17	17	>20	>20	>20	>20	>20	>20	D1/2
	76	67	60	50	40	35	30	28	25	
Materials and Contamination Characterization										
Real particle detection limit (nm) [B]	25	22	20	18	16	14	13	11	10	MPU
Minimum particle size for compositional analysis (dense lines on patterned wafers) (nm)	22	19	17	15	13	12	11	9	8	D1/2
Specification limit of total surface contamination for critical GOI surface materials (atoms/cm²) [C]	5.00E+09	5.00 E +09	5.00 E +09	MPU Gate						
Surface detection limits for individual elements for critical GOI elements (atoms/cm²) with signal-to-noise ratio of 3:1 for each element	5.00E+08	5.00 E +08	5.00 E +08	MPU Gate						

The Cost of Complexity

What measurements are needed?

- Measurements for fundamental understanding
 - Slow, expensive, infrequent
 - New measurements needed for novel materials/devices fabrication processes
- Measurements for process/quality control
 - Fast, cheap, periodic or continuous
 - Off-line
 - Real-time

Self Assembly Everywhere

Self-Assembly at All Scales, G.M. Whitesides and B. Grzybowski, Science (2002)

Directed Self-Assembly

Sub-Lithographic Patterns

Chemical Patterns: Rectifying and Multiplying Lithographic Patterns Using Block Copolymers, Joy Y. Cheng, Charles T. Rettner, Daniel P. Sanders, Ho-Cheol Kim, and William D. Hinsberg, Advanced Materials, (2008) - IBM

Dense Self-Assembly on Sparse

LER from SEM

Resonant X-ray Scattering

Are interfaces sharp, chemically diffuse or rough?

➤ Resonant scattering enhances contrast from different chemical domains

ightharpoonup C=C π^* 285 eV, C=O π^* 288 eV, C-O σ^* 293 eV

ZEP CI

Virgili et al. Macromolecules (2007)

Random Diblock Diffraction

Epitaxial Diblock Diffraction

Interface Width from XRD

Sidewall Angle

Roll-to-Roll Imprint

Metrology Requirements for R2R Diblocks

- Determine short range and long range orientation, order, defectivity, thickness, ...
- Challenges:
 - Feature sizes down to a few nm
 - Substrate ("web") speeds up to meters/second
 - Cost
- Techniques:
 - In-plane polarization analysis
 - Scattered light surface roughness measurement
 - Nano-plasmonic near-field sampling
 - Normal incidence interferometry
- All techniques will require a high level of model development to enable data extraction
- Low-cost/High-speed requirement → Measurement technique must be specific to the type of pattern being measured

High-Speed Near-field Measurement

- Metrology frame contains "laser gauges"
 - Know spacing between read heads to ~nm
- Read heads operate as in disk drive
 - "fly" above web surface: Height ~ several nm
 - Move up and down: Track surface undulations
- Read heads are "functionalized" with a near field imaging system specific to the pattern being measured
 - ...NSOM, guided modes, plasmonic, interferometric, polarization ...
- Near field sensors give local nm scale resolution
 - Sense Local Order
- Laser gauges allow for correlation of signals from separate sensors
 - Compute Long Range Order

"Laser Gauges" track the relative position of each sensor arm to nm precision

→ Determine long range order.

Each sensor head is functionalized to measure precisely the type of pattern(s) being generated on the "web" → Determine short range order

"Metrology
Frame"

"Web"

"Flying Height Sensor" arms from hard disk read heads.

- "Float" a few nm above the "web"
- Automatically (aerodynamically) move up and down to track vertical deviations in the "web" top surface position

Single-Molecule/Nanoparticle Behavior

- Brownian motion limits the dwell time of single molecules in a diffraction-limited microscope observation volume
- Tracking-FCS uses feedback control to combine the spatial resolution of single-particle tracking with the temporal resolution of fluorescence correlation spectroscopy, all with a single molecule or nanoparticle
- The method is sensitive to rotational motion, conformational changes, binding/unbinding – anything that affects fluorescence intensity

■ In open-loop configuration, 60-nm diameter particles diffuse across the beam in 100 ms – 300 ms

Controlling Brownian Motion

- A. J. Berglund and H. Mabuchi, "Tracking-FCS: Fluorescence correlation spectroscopy of individual particle," Optics Express **13**, 8069-8082 (2005)
 A. J. Berglund, K. McHale and H. Mabuchi, "Fluctuations in closed-loop fluorescent particle tracking," Optics Express **15**, 7752-7773 (2007)
 K. McHale, A. J. Berglund, and H. Mabuchi, "Quantum dot photon statistics measured by three-dimensional particle tracking," Nano Letters **7**, 3535-3539 (2007)
 - Rotating the laser focus encodes a single particle's position
 - Translation of the sample locks a particle to the observation volume

Controlling Brownian Motion

 In closed-loop mode, single-photon fluorescence signal (top) and particle position (bottom) are collected simultaneously for a single particle

Morphological Diversity in CNTs

Growth at 500°C in 300 mTorr of C₂H₂

Factors Controlling the Catalytic CVD Synthesis of CNTs

- Catalyst: Ni, Cu, Co, Fe, Mo and bimetallic catalysts
- Support: SiO₂, MgO, TiO₂
- Temperature: 500°C 1000°C (400 °C -700 °C)
- Precursor: Hydrocarbons (CO, CH₄, C₂H₄, C₂H₂ etc.)
- Pressure: 760 Torr (1 300 mTorr)

Environmental TEM

THANK YOU!

Nanophotonic cavities for single molecule detection

- Label-free, single molecule sensitivity due to:
 - High quality factors (long photon interaction time)
 - Wavelength-scale light confinement (strong light-matter interaction)
- First demonstration: Armani et al,
 Science, 2006 Single molecule detection of interleukin-2 in a 80 mm diameter, toroidal glass microcavity

(K. Srinivasan and O. Painter, Nature, 2007)

Nanophotonic light sources for chip-level spectroscopy

- Nanofabricate optical resonators in light-emitting media to create on-chip lasers and LEDs for spectroscopy applications
 - 2D arrays of devices on a chip
 - Tune resonator geometry across array for multi-wavelength device
 - Optimized device geometries for inplane or vertical emission, depending on application
 - Can be integrated with microfluidics for sample delivery to sensing region

Nanoplasmonic Optical Resonators For Biosensing

- Plasmons confine light to nanoscale dimensions
- Array of slots gives high-Q resonator
- Transmission very sensitive to index in slots

Nanoscale volume and sensitivity can yield label-free sensing of molecules selectively bound to cavity walls

Atomic Force Microscopy

- Proven utility for Nanoscience
- Optical readout works well
- Free space optics:
 - cm-scale beam path
 - stray light
- Bulk external actuators
- Stability, vibration issues
- Precision is typically limited by optical readout noise
 - off-resonance
 - in low to modest Q situations (air, liquid)
- Bandwidth is limited by cantilever and readout

Motivation

- Integrated Optical Sensing of Mechanical Motion
 - Optical Interferometric Readout
 - High Q and High Bandwidth Mechanical Probe
 - Internal MEMS Actuation
 - Fiber Based Excitation and Readout
 - Applications in Real Life Problems i.e. AFM

Nanophotonic Resonators

- Microtoroid (Q~10⁸)
- Microdisk (Q~10⁶)
 - 10 µm diameter Si disk Q=1.2x10⁶
 - 25 µm diameter SiN disk Q=1.7x10⁶
- Microring (Q~10⁶)
 - 60 µm diameter SiN ring Q=1x10⁶
- Photonic Crystal (Q~10⁵-10⁶)
 - L3 Cavity Q=5x10⁴
 - MH Cavity Q=2.9x10⁵

Cavity Optomechanics

- Optical shot noise limited mechanical measurements with noise floors of order 10^{-18} m/Hz^{1/2} .
- Opto-mechanical cooling reduces thermal noise floor by orders of magnitude.
- Optically excited regenerative oscillation for precise mechanical frequency shift measurements.

Coupling of high Q mechanical and high Q optical modes

T. J. Kippenberg, Science (2008)

O. Painter's group

Integrated MEMS Tunable High Q Optical Cavity

- MEMS Actuated Mechanical Resonator
 - Single crystal Si, Si nitride
 - Electrostatic actuation for
 - Tuning
 - Positioning
- High Finesse Interferometry
 - Si Microdisk resonator (Q>1M)
 - Integrated optical excitation
- Evanescent Field Optical Coupling
- Independent Optimization of Optical and Mechanical Components

Simplified In-plane Opto-Mechanical Probe

- Mechanical Resonator
 - Single crystal Si
 - Small, high bandwidth
- High Finesse Interferometry
 - Si Microdisk resonator
 - External excitation (tapered fiber)
- Evanescent Field Optical Coupling

FEM Simulation

Device Design, Fabrication and Mechanical Testing

SOI: 260 nm Si, 1 µm Oxide

Si layer patterned with E-beam and dry etched

Si Dioxide deposited, patterned and etched

Si Nitride deposited, patterned and etched; Si Dioxide etched

Testing Setup

Experimental Results

Resonant spectra at various gaps

- > 5.2 pm linewidth (TM, Q \sim 3.0x10⁵)
- > 1.2 pm linewidth (TE, Q ~ 1.3x10⁶)
- > 69 nm mechanical displacement
- No obvious optical Q degradation

Experimental Results

Resonant frequency tuning vs. gap change

- **➢Optical resonance tuning:** ~ 150 linewidth (TM); ~ 50 linewidth (TE)
- ➤ Mechanical Displacment/resonance shift: 0.5 nm/linewidth (TM); 1.3 nm/linewidth (TE)
- ➤ Implication for displacement sensing: 0.5 pm sensitivity assuming a 1000 SNR

Integrated MEMS Tunable Cavity Summary

- Optomechanical Transduction
 - Optical Cavity Linewidth: 1.2 pm (TE, Q~1.3x10⁶)
 - Optical resonance tuning: ~ 150 linewidth (TM)
 - Mechanical Displacement/resonance shift: ~0.5 nm/linewidth shift (TM)

Implication for displacement sensing: < 0.5 pm sensitivity

New Design
Optical resonance tuning:
15 nm ~ 750 linewidth (TM)

