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CNST

= Provides the measurement and fabrication infrastructure to
support all phases of nanotechnology development from discovery to
production.

Stondords and Technelogy

= Fee-for-use, state-of-the-commercial-art measurementand
fabrication capabilities are provided by developing and maintaining
a national shared resource, the NanoFab.

= Beyond state-of-the-commercial-art nanoscale measurement and
fabrication solutions are developed and provided using a
multidisciplinary approach that involves partnering with industry,
academia, and government.
= Serves as a hub to link the external nanotechnology community
to the vast measurement expertise that exists within the NIST
Laboratories.

= Helps to educate the next generation of nanotechnologist.
WWW. nist.gov/cnst
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Nanomanufacturing Today
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Nanomanufacturing Tomorrow

Metal/semiconductor

OBRLZESYES,
S
. ofe" S0 :‘.‘

5 )
2 '
o
» ™ . ..'§

5 :;%F .,'-v',.»":“ i s # /7;’

Rods

AN

TR 25w
N Zr5

Some asse

Water Purification
& Photolysis

y required!




C N S Center for Nanoscale
Science & Technology

Where do we need to go?

= 193 nm immersion lithography

= 40 nm pixels, 3 x 103 m?/s
= 6.25 x 104 pixels/m?, 2 x 100 pixels/s

= | etterpress

= 40 pm pixels, 30 m?/s
= 5 x 108 pixels/m?, 1.5 x 100 pixels/s

= 104 x areal throughput, 10° x feature density
> 2 x 1016 40 nm pixels/s or better
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How can measurement help?

= Measurements for fundamental understanding

= Measurements for process/quality control
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Metrology Requirements

Table MET2a  Metrology Technology Requirements—Near-term Years

Year of Production 2007 2008 2009 2010 2011 2012 2013 2014 2015 Driver
DRAM % Pitch (nm) (contacted) 63 57 50 45 40 36 32 28 25

:j; E’é‘iﬁiﬁcg:;” I .(M1) % Pitch 68 59 52 45 40 36 32 28 25

MPU Physical Gate Length {nm) 25 22 20 18 16 14 13 11 10

Microscopy

Inline, nondestructive microscopy
process resolution (nm) for P/T=0.1

Microscopy capable of
measurement of patterned wafers
having maximum aspect
ratio/diameter (nm) (DRAM
contacts) [A]

Materials and Conramination
Characterization

Real particle detection limit (nm)
[B]
Minimum particle size for

compositional analysis (dense lines 22 19 17 15 13 12 11 9 8 Di/2

on patterned wafers) (nm)

25 22 20 MPU

Specification limit of total surface

contamination for eritical GOI 5.00E+09 | 5.00E+09 | 5.00E+09 | 5.00E+09 | 5.00E+09 | 5.00E+09 | 5.00E+09 | 5.00E+09 | 5.00E+09
surface materials (atoms/cm?) [C]

MPU
Gate

Surface detection limits for
individual elements for eritical GOI
elements (atoms/em?) with signal- 5.00E+08 | 5.00E+08 | 5.00E+08 | 5.00E+08 | 5.00E+08 | 5.00E+08 | 5.00E+08 | 5.00E+08 | 5.00E+08
to-noise ratio of 3:1 for each
element

MPU
Gate
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The Cost of Complexity

Logic

Complexity/
Functionality Storage

Displays

Sensors

Lighting

Photovoltaics

Catalysts

Coatings  Filters

$1/m? Cost/area $106/m?
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What measurements are needed?

= Measurements for fundamental understanding

= Slow, expensive, infrequent

= New measurements needed for novel materials/devices
fabrication processes

= Measurements for process/quality control

= Fast, cheap, periodic or continuous
= Off-line
» Real-time
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Self-Assembly at All Scales, G.M. Whitesides and B. Grzybowski, Science (2002)
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5 CNSTems s DIST
Directed Self-Assembly

~

Park et al., Science (2004) 2 =

w7
.......

Cui et al. Nanoletters (2004)
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Dense Self-Assembly on Sparse
Chemical Patterns: Rectifying and
Multiplying Lithographic Patterns
Using Block Copolymers, Joy Y.
Cheng, Charles T. Rettner, Daniel
P. Sanders, Ho-Cheol Kim, and
William D. Hinsberg, Advanced
Materials, (2008) - IBM

p:5.5 nm P=28.8nm
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LER from SEM
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J.A. Liddle, Gila Stein, CNST
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Resonant X-ray Scattering

Are interfaces sharp, > X-ray scattering can measure interfacial width
chemically diffuse or rough? | or roughness to sub-0.5 nm accuracy.

» Different chemistries have distinct resonances

»Resonant scattering enhances contrast from
different chemical domains

»C=Cn*285¢eV,C=0n* 288 eV, C-O c* 293 eV

PMMA

Virgili et al. Macromolecules (2007) % \L5;Q

Gila Stein, CNST
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Random Diblock Diffraction
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Epitaxial Diblock Diffraction

q, (1/nm)
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Interface Width from XRD
duty cycle (w,/d)
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Sidewall Angle
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RoII -to-Roll Imprint

Ahn & Guo, ACS Nano 2009
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Metrology Requirements for R2R Diblocks

Determine short range and long range orientation, order, defectivity,
thickness, ...

= Challenges:
» Feature sizes down to a few nm
= Substrate (“web”) speeds up to meters/second
= Cost

= Techniques:
» |n-plane polarization analysis
= Scattered light surface roughness measurement
= Nano-plasmonic near-field sampling
= Normal incidence interferometry

= All techniques will require a high level of model development to
enable data extraction

= Low-cost/High-speed requirement = Measurement techniqgue must
be specific to the type of pattern being measured
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High-Speed Near-field Measurement

= Metrology frame contains “laser gauges”
= Know spacing between read heads to ~nm

Read heads operate as in disk drive
= “fly” above web surface: Height ~ several nm
= Move up and down: Track surface undulations

Read heads are “functionalized” with a near field imaging system
specific to the pattern being measured

= ...NSOM, guided modes, plasmonic, interferometric, polarization ...

Near field sensors give local nm scale resolution
= Sense Local Order

Laser gauges allow for correlation of signals from separate sensors
= Compute Long Range Order
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Each sensor head is

“Laser Gauges” track the relative functionalized to measure
position of each sensor arm to nm precisely the type of pattern(s)
precision being generated on the “web”
—> Determine long range order. - De;;e/rmine short range order

/

“Flying Height Sensor” arms from hard disk read heads.
* “Float” a few nm above the “web”

» Automatically (aerodynamically) move up and down to
track vertical deviations in the “web” top surface position
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Single-Molecule/Nanoparticle Behavior

= Brownian motion limits the dwell time of single molecules in a
diffraction-limited microscope observation volume

= Tracking-FCS uses feedback control to combine the spatial resolution
of single-particle tracking with the temporal resolution of fluorescence
correlation spectroscopy, all with a single molecule or nanoparticle

= The method is sensitive to rotational motion, conformational changes,
binding/unbinding — anything that affects fluorescence intensity
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» [n open-loop configuration, 60-nm diameter particles diffuse across the beam in 100 ms — 300 ms

Andrew J. Berglund, CNST
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Controlling Brownian Motion

Sample
y Coverslip
PZT
532 nm
MC
532 nm
Lock-in a |\ e

A. J. Berglund and H. Mabuchi, “Tracking-FCS: Fluorescence correlation spectroscopy of individual particle,” Optics Express 13, 8069-8082 (2005)
A. J. Berglund, K. McHale and H. Mabuchi, “Fluctuations in closed-loop fluorescent particle tracking,” Optics Express 15, 7752-7773 (2007)
K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Letters 7, 3535-3539 (2007)

» Rotating the laser focus encodes a single particle’s position
» Translation of the sample locks a particle to the observation volume

Andrew J. Berglund, CNST
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Controlling Brownian Motion
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* In closed-loop mode, single-photon fluorescence signal (top) and
particle position (bottom) are collected simultaneously for a single particle

Andrew J. Berglund, CNST
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Morphological Diversity in CNTs

ok

Growth at 500°C in 300 mTorr of C,H,

Renu Sharma, CNST Sharma and Igbal, Appl. Phys. Lett. 84 990 (2004)
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Factors Controlling the Catalytic
CVD Synthesis of CNTs

= Catalyst: Ni, Cu, Co, Fe, Mo and bimetallic catalysts
= Support: SiO,, MgO, TIO,

= Temperature: 500°C — 1000°C (400 °C -700 °C)

= Precursor: Hydrocarbons (CO, CH,, C,H,, C,H, etc.)
= Pressure: 760 Torr (1 - 300 mTorr)

Renu Sharma, CNST
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Environmental TEM

Renu Sharma, CNST
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Nanophotonic cavities for single molecule detection

single molecule

cavity mode

= Label-free, single molecule
sensitivity due to:

= High quality factors (long photon
Interaction time) | optical fiber __

taper

= Wavelength-scale light g disk
confinement (strong light-matter |
Interaction)

(K. Srinivasan and O. Painter, Nature, 2007)

S-Video
1
= First demonstration: Armani et al, ore camera
Science, 2006 — Single molecule 55322.;?3 = whieigh
. . . laser 12X zoom e
detection of interleukin-2 & barrel | (I
ina 80 mm diameter, toroidal glass sy oo e
microcavit - odetector
y OO iaparcaiy T PO
Rolartzafion — Alignment Setup | N

Kartik Srinivasan, CNST
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Nanophotonic light sources for chip-level
spectroscopy

Fiber-coupled microdisk lasers (K. Srinivasan et al, Opt. Express, 2006)

= Nanofabricate optical resonators in
light-emitting media to create on-chip
lasers and LEDs for spectroscopy
applications

- ur o))
(=] =] (=]

w
(=)

= 2D arrays of devices on a chip

Poweer in Laser Line (nW)
[}

= Tune resonator geometry across
array for multi-wavelength device

(=]

. . _ _ U R T T
= Optimized device geometries for in- Absorbed Pump Power (uW)
plane or vertical emission, depending

on application

= Can be integrated with microfluidics
for sample delivery to sensing region

Kartik Srinivasan, CNST



Standards and Technology

C N S Center for Nanoscale NIST
Science & TeChnology National Institute of

Nanoplasmonic Optical Resonators For Biosensing

SPP propagation direction

E air or liquid

= Plasmons confine light to nanoscale dimensions
= Array of slots gives high-Q resonator PP at metal-dielectric interface
= Transmission very sensitive to index in slots

metal (Au, Ag ...)

1
I 1.0
330nm Air —_
Ag mirrors /I\ Ag —)| r_ E 0.8t
Ag ‘g —— without mirrors
\ g oef ——— with mirrors
\r\\\\\\\ ¢ 300nm  200nm \ % th
_l_ Variable Medium 'g o4r
/I\ Slot array _>| I(_ " (air, liquid, nonlinear) g oD
50nm y ! g »=887nm |
Visible-Near IR Coherent lllumination = - % 1;0 1“:‘5 -
A =887 nm Refractive index [n]
a) Device Perspective b) Device Cross Section c) Simulated transmission v.s. index of cavity medium
t
= Nanoscale volume and sensitivity can Ul conso Bl
yield label-free sensing of molecules ooty
lectivelv bound t itv wall il
selectively bound to cavity walls — B, o ressol

Au/

Incident Light, 7.4
H. Lezec, A. Ag rawal, J. Weiner, Pacifici'et al., Nature Photonics (2007)




C N S Center for Nanoscale NIST
Science & Technology National Institute of

Stondords and Technelogy

Atomic Force Microscopy

Proven utility for Nanoscience
Optical readout works well

Free space optics: Electronics
— cm-scale beam path
— stray light

= Bulk external actuators
= Stability, vibration issues

= Precision is typically limited by optical
readout noise

= off-resonance N
* in low to modest Q situations (air, liquid) Sample Surface
= Bandwidth is limited by cantilever and

Detector and
Feedback

Photodiode

Cantilever & Tip
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C N S Center for Nanoscale NIST
Science & Technology National Institute of

Motivation

» |ntegrated Optical Sensing of Mechanical Motion
= Optical Interferometric Readout

High Q and High Bandwidth Mechanical Probe

Internal MEMS Actuation

Fiber Based Excitation and Readout

= Applications in Real Life Problems i.e. AFM

Detector and
Feedback

Electronics

Photodiode

Sample Sul FaN Chntilever & Tip

- PZT Scanner
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Nanophotonic Resonators

= Microtoroid (Q~108)
= Microdisk (Q~10°)

= 10 um diameter Si disk Q=1.2x10°

= 25 um diameter SiN disk Q=1.7x10°
= Microring (Q~10°9)

= 60 um diameter SiN ring Q=1x10°

= Photonic Crystal (Q~10°-1059)
» L3 Cavity Q=5x104
= MH Cavity Q=2.9x10°

[ =4
S 50094
208 2
E Eon
o6 S Alg=145pm 31”;’2_‘2',23(%"‘
= £ 090 q.~1.1x10°
E e}
N 04 Noss
= s
£ £
S0 £ 086
5] 5]
> 2 F-247=18.6 pm—|
0 0.84
1520 1540 1560 1580 1600 1620 154954 154956 1549.58
wavelength (nm) wavelength (nm)
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Cavity Optomechanics

. Gravity wave
detectors
+ (LIGO, Virgo, GEO,..)

* Optical shot noise limited mechanical
measurements with noise floors of order 1018
m/Hz1/2 ,

Harmonically
suspended
gram-scale mirrors

* Opto-mechanical cooling reduces thermal noise
floor by orders of magnitude.

Mirror coated
AFM-cantilevers

* Optically excited regenerative oscillation for
precise mechanical frequency shift measurements. <& Micromirrors

] |=

Optical microcavities

Y

- CPW-resonators
coupled to
nanoresonators

(2
LN

Coupling of high Q mechanical and
high Q optical modes

T. J. Kippenberg, Science (2008) O. Painter’s group

40
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Integrated MEMS Tunable High Q
Optical Cavity

= MEMS Actuated Mechanical
Resonator

= Single crystal Si, Si nitride
= Electrostatic actuation for
= Tuning
= Positioning

C N S Center for Nanoscale NIST
Science & Technology National Institute of

= High Finesse Interferometry
= Si Microdisk resonator (Q>1M)
= [ntegrated optical excitation

= Evanescent Field Optical Coupling

» Independent Optimization of Optical
and Mechanical Components

41
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Simplified In-plane Opto-Mechanical
Probe

= Mechanical Resonator
= Single crystal Si
= Small, high bandwidth

= High Finesse Interferometry
= Si Microdisk resonator
= External excitation (tapered fiber)

= Evanescent Field Optical Coupling
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FEM Simulation

TE, -y mode tuning and .
y 1,51 9 Qrad TM;, 35 mode tuning and Q4
E 12 film thickness = 180 nm ] — 60 film thickness = 180 nm
= film index = 2.2 £ film index = 2.2
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= mode wavelength=1544 nm ’ + mode wavelength~1536 nm
E 8 0.6 % 40
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2 6 » S 0
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Device Design, Fabrication and pas
Mechanical Testing y

SOI: 260 nm Si, 1 um Oxide

Si layer patterned with E-beam
and dry etched

Si Dioxide deposited, patterned
and etched

Si Nitride deposited, patterned
and etched; Si Dioxide etched

3.8V:
69 nm

AGap (rlnm)

-60

Displacement Mag.: 0.0E+00 91ED 1BED 27ED° IBED 1 2
“““ COVENTOR Voltage (V)
44
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Testing Setup

Center for Nanoscale
Science & Technology
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Experimental Results

= Resonant spectra at various gaps

TM mode, OV applied TM mode, 3.8V applied
1.0

—_
[=]

c
K]
4 S
Eo.g 3
c £
E 08 Alg=5.2pm 209 Adg=6.1 pm
5 Q~2.9x10° g Q,=2.5x10
2 0 B messpm| > 5.2 pm linewidth (TM, Q ~ 3.0x10°)
£ = Q.~2.4x10°
o £ 0.8
= e
] . .
06 2061 pm z 247564 pm > 1.2 pm linewidth (TE, Q ~ 1.3x109)
1537.35 153736 1537.37 1537.935 1537.945 1537.955
wavelength (nm) wavelength (nm)
TE mode, 0V applied TE mode, 3.8V applied : :
o PP FP > 69 nm mechanical displacement

S 0.98
-% 0.96 A%=1.9 pm _ _ _
£0.94 Q~8.0x10 » No obvious optical Q degradation
Eg-gg A ~14 £
= O ~1.4pm 1~ 094 .
goss o=1mao® | | 1y P
Noge | & 092 i
£ 084 1 € 0.90
5 082 2A%g~20.6 pm 15
Z 0.80 1 =088 2Ah5=15.6 pm

1543245 1543255  1543.265 154333 154334 154335

wavelength (nm) wavelength (nm)
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Experimental Results

= Resonant frequency tuning vs. gap change

TM1 26 mode shift TE 15 mode shift
1.2 . — . : r . 0.09 r r - - . r
= O  Experiment _ | O  Experiment| |
g 1.0} —e— Simulation | E 0.08 —s— Simulation
p £ 007}
< 08; starting gap=340 nm ] E 0.061 starting gap=333 nm]
_‘C" » 0.05} :
€06 pe
o S 0.04}
S 0.4} ] < 0.03}
—_ 0 et
g 02 3 0 0.02f
S © 001}
= )
= 0

370 280 290 300 310 320 330 340 270 280 290 300 310 320 33
gap (hm) gap (nm)

»Optical resonance tuning: ~ 150 linewidth (TM); ~ 50 linewidth (TE)
»Mechanical Displacment/resonance shift: 0.5 nm/linewidth (TM); 1.3 nm/linewidth (TE)

»Implication for displacement sensing: 0.5 pm sensitivity assuming a 1000 SNR

47
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Integrated MEMS Tunable

Cavity Summary

= Optomechanical Transduction
= Optical Cavity Linewidth: 1.2 pm (TE, Q~1.3x105)
= Optical resonance tuning: ~ 150 linewidth (TM)

= Mechanical Displacement/resonance shift: ~0.5
nm/linewidth shift (TM)

= |mplication for displacement sensing: < 0.5 pm

sensitivity
TE TM [
14 C
=i _ — G film thickness = 1B0 nm
E 1o i kel 0™ £ flm index = 22
E 104 disk damerpERO el dmde“ I:‘I:'.:I:».'E‘trelm‘-1I H1";:‘516- fm
E mode wavelengthe= 1544 nm ] 'E wavelengtiy=
wi gl ﬁ a0k
£ =
£
2 o S
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o 4 T
S| T
g 2t = 10
=
[1)] .. = S P o -
sUw 1w Luu ouf suu S50 qu0 50 100 150 200 250 300 350 400
gap {nml | gap (nm

NIST

National Institute of
Stondords and Technelogy

New Design

Optical resonance tuning:
15 nm ~ 750 linewidth (TM)

film thickness = 180 nm

filrn index = 2.2

disk diameter = 10 um
made wavelengths=1536 nm

¥ ¥ & w2

wavelength shift (nm)

=

50 100§ 150 200 250 300 350
gap (nm)
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