Template Directed Assembly of Polymer Blends into Nonuniform Geometries at Multiple Length Scales

Center for High-rate Nanomanufacturing

University of Massachusetts Lowell

Northeastern University

MICHIGAN STATE

NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN)

Ming Wei(UML), Jason Chiota(UML), Liang Fang(UML), Arun Kumar(UML), Jia Shen(UML), John Shearer (UML), Jun Lee(UML), Sivasubramanian Somu(NEU), Xugang Xiong(NEU), Carol Barry(UML), Ahmed Busnaina(NEU), and Joev Mead (UML)

Team Strength and Capability

NEU: Directed assembly, MEMS, fabrication, nanoscale contamination control

UML: High volume polymer processing and assembly

Semiconductor & MEMs fab

- 7,000 ft² class 10 and 100 cleanrooms
- 6 inch completer wafer fab, nanolithography capabilities

UNH: Synthesis, self-assembly

Center for High-Rate Nanomanufacturing

A unique partnership

Plastics processing labs

- 20,000 ft² +
- Compounding and forming equipment

Fully-equipped synthetic labs • 10,000 ft² +

Director: Ahmed Busnaina, NEU

Deputy Director: Joey Mead, UML, Associate Directors: Carol Barry, UML; Nick McGruer, NEU; Glen Miller, UNH; Jacqueline Isaacs, NEU, Group Leader: David Tomanek, MSU

How Does Directed Assembly and Transfer Work?

- State of the Art:
 - Pure selfassembly produces regular patterns

Nanomanufacturing Through Highrate/High-volume Templates for Guided Self-Assembly of Nanoelements

Will provide the tools to fabricate a wide array of products

Directed Self-Assembly of Polymers

Flexible Electronics

(Nano-)Template:

Biosensors (radiation, cancer, anthrax, etc.)

Resulting concentration:

Kazmer, UML

State of the Art Directed Assembly of Block Copolymers

- Template directed assembly of block copolymers into nanopatterns with long range order
- Annealing often necessary
- Preparation of non-uniform structures challenging homopolymers may be required
- Patterning reported to require ith 10% variation between phase domain size and pattern periodicity

PS-b-PMMA/PS/PMMA

Nealy et al., Nature **424**, 411-414 (2003), Science **308**, 1442-1446 (2005) Nealey et al., Journal of Vacuum Science Technology B, 25(6), (1969-1975), 2007

Center for High-Rate Nanomanufacturing

State of the Art Directed Assembly of Polymer Blends

Underlying MHA dot diameter (nm)

D. Coffey & D. Ginger, JACS, 2005, 127, 4564

SAM: hexadecanethiol [HS(CH₂)₁₅CH₃] poly(2-vinylpyridine), polystyrene J. Raczkowska, et al., *Macromolecules*, 2005, *38*, 8486

Surface Science, 600, 1004-1001 (2006)

- Wide range of materials
- Nonuniform patterns and simultaneous multi-scale assembly possible
- Best results occurred when phase domain size and pattern periodicity were commensurate – not quantified

Polymer Blend Morphology Control

Chemically Functionalized Templates

Heterogeneous Assembly of Polymer Blends -Polystyrene and Polyacrylic Acid (PS/PAA)

Polymer blends assembled in 30 s

- No annealing
- Process conditions are critical for good assembly
- Non-uniform patterns

Square arrays Circle arrays

PS assembled on nonpolar areas (light); PAA assembled on the polar regions (dark)

Wei, M. L. Fang, J. Lee, S. Somu, X. Xiong, C. Barry, A. Busnaina, and J. Mead, *Advanced Materials*, 21(7), 735 (2009).

Multi-scale Patterned Polymer Blends

- Chemically functionalized templates assemble PS/PMMA polymer blends into non-uniform geometries.
- Polymer domains were patterned from 300 nm down to 100 nm on *the same template*.

PS/PMMA (50/50 ratio)

Chiota et al., *Small*, 2009 Dec;5(24):2788-91

Commensurability

AFM topography images of PS (18k)/PAA(2k) blends 3000 rpm, 30s, SEM images of chemically heterogeneous patterns

Directed assembly of PS/PAA blend on chemically heterogeneous patterns

R -characteristic length = 993 nm

 λ - pattern periodicity (pitch) = 1000nm

• Characteristic length, R, is related to the domain sizes

Commensurability

- Relation between phase domain size and pattern periodicity, λ (pitch)
- Block Copolymers¹
 - Requires domain size and λ to be within 10% of each other
- Blends²
 - Well-ordered directed morphology formed when the characteristic length (*R*) (unpatterned) was commensurate with pattern periodicity (λ), i.e., $R \sim \lambda$
 - Pattern periodicities micron-scale relationship not quantified
- How to control domain size?
 - Spin Speed
 - Solution Concentration

¹Nealey et al., Journal of Vacuum Science Technology B, 25(6), (1969-1975), 2007 ²Raczkowska, et al., Macromolecules 2005, 38, 8486

Effect of Spin Speed on Domain Size

Characteristic length (R) dependence on spin speed and concentration $\rightarrow R = k\omega^{\alpha} o^{\beta}$ (*k* denotes constant, ω is the spin speed and *c* is the solution concentration).

Raczkowska, et al., Macromolecules 2005, 38, 8486

Effect of Spin Speed for Different Periodicities

Spin Speed

PS/PAA blends using alternative MUAM/ODT patterns with various periodicities: ω_c stands for the critical spin speed for each pattern periodicity. Conc. 1%

Effect of Solution Concentration on Domain Size

1.0%

 $2 \, \mu m$

1.2%

1.4%

Spin speed 3000 rpm

Effect of Solution Concentration for Different Periodicities

PS/PAA blends using alternative MUAM/ODT patterns with various periodicities: C_c stands for the critical solution concentration for each pattern periodicity. 3000 r

Center for High-Rate Nanomanufacturing

Commensurability

- Patterning efficiency (*Ep*) (dimensionless parameter)
 - When *Ep* is 0.5, morphology not directed and is isotropic.
 - When Ep is 1, morphology is perfectly patterned
- When 0.8<R/λ <1.2 well ordered patterns are formed, which corresponds to commensurability of 20% for assembly of polymer blends

Polymer Blend Morphology Control

Assembly of Conducting Polymers using Nanowire Templates

Transfer State of the Art

100 μm

Silica nanoparticles

M. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. Usrey, M. Strano, and J. Rogers, NANOLETTERS, 2004, 4, 1643

S. Huang, L. Dai, and A. Mau, *J. Phys. Chem. B* (1999), *103*, 4223

M. MEITL, Z. ZHU, V. KUMAR, K. LEE, X. FENG, Y.GANG Y. HUANG, I. ADESIDA, R. NUZZO AND J. ROGERS, Nature Materials VOL 5 JANUARY 2006

Electrophoretic Assembly and Transfer

- Precise directed electrophoretic assembly of conductive polymer - polyaniline (PANI)
 - Requires 10 volts for < 1 minute</p>
 - Template design critical for assembly into patterns
- Transfer of polymer wires onto substrates
 - Dependent on polarity of transfer

Wei et al., J. of Macromolecular Rapid Comm., 27, 2006

Assembled polymer

Transfer to polyurethane

Template after transfer

Scale up of Transfer Process

Transfer of conducting polymer and CNTs

• Transfer time 10 s, total cycle time 40 s

Thermoforming machine and mold picture

Kumar, M. Wei, C. M. F. Barry, S. Orroth, A. Busnaina, J. Mead, Proc. An Tech. Conf. Soc. Plast Eng, 2008

Transfer using Thermoforming Process

Summary

- High rate assembly and transfer processes for polymer blends (<1 min)
- Heterogeneous Assembly
 - Control of domain sizes for PS/PAA blends using spin speed or solution concentration.
 - When the variation between characteristic length and pattern periodicity was within 20%, well-ordered replication of patterns was achieved
 - Pattern size down to 100 nm
 - Non-uniform geometry and multi-scale in one step fashion
- Homogeneous Assembly and Transfer
 - Directed assembly of conducting polymers
 - Complete transfer to flexible substrate by thermoforming
 - Cycle time 50 seconds

Acknowledgements

The authors wish to acknowledge the support of the National Science Foundation under grant number NSF-0425826

The authors also acknowledge the Kostas Nanomanufacturing Center at NEU

Nanowire Template Directed Assembly Using Electric Fields or Chemical Functionalization

Nanotrench Template Directed Assembly Using Electrophoresis or Chemical Functionalization

