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Outline

* |ntroduction to SERS

* |Interference lithography as array fabrication platform

— Scheme | : Convective assembly of plasmonic structures
Fabrication, Characterization, E-M modeling

— Scheme IlI: Direct metal deposition of plasmonic structures
Raman uniformity mapping

® Summary
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Surface Enhanced Raman Spectroscopy
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e SERS discovered over 30 years ago Biolooy \eg At
— Jeanmaire and Van Duyne, 1977

— Albrecht and Creighton, 1977 E;CU‘;

~ analytical

chemistry

forensics

* Orders of magnitude increase in
Raman cross-section in the vicinity of
plasmonic surfaces
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Unenhanced' 10 cm Quo vadis surface-enhanced Raman

— Enhancements of 1019 makes it as scattering?
bright as fluorescence! Phys. Chem. Chem. Phys., 2009, 11, 7348
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& So, Where are We Now?

* SERS discovered over 30 years ago

— Orders of magnitude increase in Raman cross-section in the
vicinity of plasmonic surfaces

— Dominated by electromagnetic near-field resonant
enhancement

— Single molecule sensing at “hot spots” or “hot junctions”

* Yet, significant challenges remain before wide
Implementation

— Practical implementation requires engineering of high-
density “hot-spot substrates” with nm precision over large
areas on the order of cm?

Low cost and high throughput
Reproducibility and signal uniformity

— Formidable nanofabrication challenge due to “nm-cm”
length scale mismatch
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Rapid increase of E-field
enhancement for gap sizes
under 10 nm

Since enhancement is
localized, “nanogap” density
must be maximized for
optimum sensitivity
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Importance of Hot Spots

J. Phys. Chem. B 2003, 107, 7607—-7617

Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface
Plasmon Resonance by Finite Difference Time Domain Method

M. Futamata,®* Y. Maruyama,>$ and M. Ishikawa®/
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Hot Spots

Methods of Forming High Densities of

Approach

Authors

Pros

cons

Self-Assembly

Freeman, et al.
Science (1995)
267(5204): 1629-
32

-Cheap and easy

-Uniform spacing
and gap control are
difficult to achieve

Ag-over
nanosphere
lithography

The Van Duyne
group,
Northwestern
University

-Large area coverage
-Triangular shapes
-Cheap

->107 EF reported

- Small gap spacing
difficult to achieve
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-Very high EF possible

AAO Muetal. (2009) | .| arge area coverage -Limited shape
template- Nanotechnology . control
isted 21: 015604. -Gap spacing control _ o
assis . -Uniformity issues
-Relatively cheap
-107 EF reported
E-beam litho 2| Gunnarsson etal. | _ -Expensive
| (2001) Applied Shape cohtrol N |
Physics Letters -Gap spacing control -NO scale up
78(6): 802-4. potential
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Our Approach to Scalable Substrates

* Platform: Lithographically defined templates
— 157-nm interference lithography
— Crossed exposures allow dense pattering of holes or posts

* Two metal deposition schemes
1. Convective assembly of individual nanoparticles into
templates
Decouple nanoshape fabrication from placement

2. Direct evaporation of plasmonic metal through template
openings

® Structure design/optimization with electromagnetic
simulations
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= Interference Lithography for Template
Patterning
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* Unique interference lithography system operating at 157 nm
* Forms high-resolution periodic arrays with high throughput (compared to e-beam)
* Half-pitch from 45to 22nm —» highest optical resolution

* The short wavelength also enables novel photochemistry

* Direct patterning of PMMA, SiO,, etc.
e Chemical surface modification

.:liiii.-:-iiir“il?]'ii

45-nm lines etched to 90-nm depth 22-nm lines 75-nm circles cut into SiO,

100 e
o |

These capabilities enable new applications
- Lithography
- Nanophotonics
- Nanofluidics
- Biotechnology
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Template Fabrication for Nanoassembly
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Two crossed exposures in PMMA

— 1.5mJ/cm? dose for each exposure
— 10 sec for each exposure

— Exposure followed by 30 sec MIBK/IPA develop

Only a single litho step — simple processing!
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= Convective Assembly from Colloidal
Suspension
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* Particle transport towards the surface through
convective flow of the colloidal suspension towards
the liquid meniscus

[Gap height, H

* Assembly assisted by

— Surface energy difference
between hydrophilic gold and
hydrophobic PMMA

— Clamping action of the PMMA
posts

— Capillary forces of the nano-
crevices

to appear in Advanced Materials, 2010
MIT Lincoln Laboratory <=

NENS SERS-10
VL 6/22/2010



Assembly Without Nanotemplate

On Hydrophobic PMMA
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On Hydrophilic Au Film
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Convective Assembly Onto Templated
Surface
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e Contiguous templating over
15x15 um? areas

— Multiple assembled areas
per lithographic field

* Gap size variation
dominated by particle non-
uniformity

— 80 nm =8 nm in solution,
as quoted by supplier

— Gap size estimated at
10£5nm, 1o

* [Further reduction in gap
size and variation can be
achieved

User Name = CIHAN 40 nm

Date :31 Jul 2009

Time :9:02:16 L *
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Measuring Plasmonic Resonances

* Darkfield Rayleigh backscatter measurements

— Darkfield mode suppresses Au reflection
background

— Microreflectance for spatial resolution

* Resonance peak strongly red-shifted

cf. solution resonance E—Mrih:
— From 550 nm for particles in solution ! ;
~ 0.3 .
to =750 nm for nanoassembly Solution ! Assembly

— Nearest-neighbor interactions
0.2 A

* (Good overlap of resonance with both
Raman excitation and Stokes
scattered photons

0.1 1

Backscatter and Absorbance
(arb. units)

0.4 0.5 0.6 0.7 0.8 0.9 1

Wavelength (um)
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Modeling E-field Enhancement with
FDTD
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* Good agreement in wavelength peak position
with measured backscatter
* Hot spots spatially localized
— 2% area contributes to >95% of SERS signal
— 7x7 nm? area of adsorbates per “hot spot”

- Au: yellow
- PMMA: purple
-5 A grid size
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SERS Spectra of Benzenethiol From
Nanoassembled Regions

Different Assembly Regions (15x15 um?)
Within One Field (1.5x1.5 mm?)
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* Average Enhancement Factor~ 5 x 10°
— Over 6 um measurement spot

— Compares well with other published
work for nanoarrays

— Using the same conservative
definition of EF

e +20% repeatability over different
assembly regions
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= Possible Extension of Nanoassembly —
Novel Nanoshapes

e Surface field enhancement depends strongly on
nanoparticle shape

— Sharp corners and tips help to focus fields to form

hot spots
Increasing Surface Field Enhancement from Simulations Previous work
Yang, et al.
|Ema><|/ |Ei“0| J. Phys. Chem. C, Vol. 111, No. 26, 2007
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e Based on previous work, custom synthesis of non-

—_—

spherical particles in solution is feasible '
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S Direct Nanocone Patterning of SERS
Structures
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* As an alternative to templated nanoassembly, we fabricated
metal structures using direct metal deposition

— Interference lithography used to pattern openings in a
dielectric stack

e Offers flexibility of different metal depositions
— Not only Au but also Ag

* No lift-off: metal surface is not exposed to chemicals

e Potential for formation of 3-dimensional structures
— Cone tips inside cavities

MIT Lincoln Laboratory <=
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Nanocone Array Fabrication
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Stack deposition Litho exposure/develop RIE O, etch Ad/Au deposition

-55nm SOG/80 nm - TWo Cross exposures - Through AR3 - E-beam assisted
AR3/Si Wafer - TMAH development
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SEMs of Final 3-D Nanostructures
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SERS Uniformity Mapping
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* Benzenethiol-treated Ag 1570 cm (ve. ) Intensity Map
— 532-nm excitation 500
— 30 um measurement spot

400

Y (um)

* Good signal uniformity over the full
patterned field
— ~1.5x 1.5mm?area 300

-1000 -500 0 500 1000
X (um)

-400
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Summary of Average SERS Enhancement
Factors

* Analyte: adsorbed benzenethiol
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Summary
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* Developed two methods of fabricating high-density of
SERS “hot spots”

— Nanoassembly-assisted fabrication technique decouples
shape/material optimization from placement

— Direct pattern/deposition techniques offers the possibility of
tailored 3-D structures for optimum field enhancement

* Techniques are scalable to wafer-size area with high
throughput

— Multiple mm? areas with step-and-repeat

* Demonstrated average enhancement factors of > 5x10° over
mm? areas

— Comparable to state-of-the art over large areas
— Further optimization should improve performance
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