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Surface Enhanced Raman Spectroscopy

• SERS discovered over 30 years ago
– Jeanmaire and Van Duyne, 1977
– Albrecht and Creighton, 1977

• Orders of magnitude increase in 
Raman cross-section in the vicinity of 
plasmonic surfaces

Unenhanced: 10-29 cm2
Quo vadis surface-enhanced Raman 
scattering?
Phys. Chem. Chem. Phys., 2009, 11, 7348

– Unenhanced: 10-29 cm2

– Enhancements of 1010 makes it as 
bright as fluorescence!
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So, Where are We Now?

• SERS discovered over 30 years ago
– Orders of magnitude increase in Raman cross-section in theOrders of magnitude increase in Raman cross section in the 

vicinity of plasmonic surfaces
– Dominated by electromagnetic near-field resonant 

enhancement
– Single molecule sensing at “hot spots” or “hot junctions”Single molecule sensing at hot spots  or hot junctions

• Yet, significant challenges remain before wide 
implementation

– Practical implementation requires engineering of high-
density “hot-spot substrates” with nm precision over large 
areas on the order of cm2

Low cost and high throughput 
Reproducibility and signal uniformity 

– Formidable nanofabrication challenge due to “nm-cm ” 
length scale mismatch
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Importance of Hot Spots

• Rapid increase of E-field 
enhancement for gap sizes 
under 10 nm

• Since enhancement is 
localized “nanogap” densitylocalized, nanogap  density 
must be maximized for 
optimum sensitivity

x
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Methods of Forming High Densities of 
Hot Spots

Approach Authors Pros Cons
Self-Assembly Freeman, et al.

Science (1995) 
267(5204): 1629- -Uniform spacing 

d t l
( )

32 -Cheap and easy and gap control are 
difficult to achieve

The Van Duyne 
group, -Large area coverage - Small gap spacing 

difficult to achieveA g p,
Northwestern 
University

-Triangular shapes
-Cheap
- >107 EF reported

difficult to achieveAg-over 
nanosphere 
lithography

Mu et al. (2009) 
Nanotechnology 
21: 015604.

-Large area coverage
-Gap spacing control
-Relatively cheap
-107 EF reported

-Limited shape 
control
-Uniformity issues

AAO 
template-
assisted

10 EF reported

Gunnarsson et al. 
(2001) Applied 
Physics Letters
78(6): 802-4

-Shape control
-Gap spacing control
V hi h EF ibl

-Expensive
-No scale up 
potential

E-beam litho
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Our Approach to Scalable Substrates

• Platform: Lithographically defined templates
– 157-nm interference lithography– 157-nm interference lithography
– Crossed exposures allow dense pattering of holes or posts

• Two metal deposition schemesTwo metal deposition schemes
1. Convective assembly of individual nanoparticles into 

templates
Decouple nanoshape fabrication from placement

2. Direct evaporation of plasmonic metal through template 
openings

St t d i / ti i ti ith l t ti• Structure design/optimization with electromagnetic 
simulations
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Interference Lithography for Template 
Patterning

• Unique interference lithography system operating at 157 nm
• Forms high-resolution periodic arrays with high throughput (compared to e-beam)
• Half-pitch from 45 to 22 nm highest optical resolution

• The short wavelength also enables novel photochemistry
• Direct patterning of PMMA, SiO2, etc.
• Chemical surface modification

45-nm lines etched to 90-nm depth 75-nm circles cut into SiO222-nm lines

These capabilities enable new applications
- Lithography
- Nanophotonics

Nanofluidics
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Template Fabrication for Nanoassembly

• Two crossed exposures in PMMA
– 1.5 mJ/cm2 dose for each exposure
– 10 sec for each exposure
– Exposure followed by 30 sec MIBK/IPA develop

O l i l lith t i l i !• Only a single litho step  simple processing! 

Field Uniformity Post Array

Excellent 
uniformity over 
1 5 1 5 2

90-nm pitch
35-nm diameter1.5 x 1.5 mm2 35-nm diameter
45-nm height

1 mm 200 nm 
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Convective Assembly from Colloidal 
Suspension

• Particle transport towards the surface through 
convective flow of the colloidal suspension towards 
the liquid meniscus

• Assembly assisted byy y
– Surface energy difference 

between hydrophilic gold and 
hydrophobic PMMA
Cl i ti f th PMMA

 

– Clamping action of the PMMA 
posts

– Capillary forces of the nano-
crevices
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Assembly Without Nanotemplate

On Hydrophobic PMMA

O H d hili A FilOn Hydrophilic Au Film
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Convective Assembly Onto Templated 
Surface

• Contiguous templating over 
15x15 m2 areas

– Multiple assembled areas p
per lithographic field

• Gap size variation 
dominated by particle nondominated by particle non-
uniformity
– 80 nm  8 nm in solution, 

as quoted by supplierq y pp
– Gap size estimated at       

10  5 nm, 1

• Further reduction in gap 
size and variation can be 
achieved
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Measuring Plasmonic Resonances

• Darkfield Rayleigh backscatter measurements
– Darkfield mode suppresses Au reflection 

background
Mi fl t f ti l l ti– Microreflectance for spatial resolution

res
• Resonance peak strongly red-shifted 

cf solution resonance
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Modeling E-field Enhancement with 
FDTD

• Good agreement in wavelength peak position 
with measured backscatter Au: yellow

ZZ

with measured backscatter
• Hot spots spatially localized

– 2% area contributes to >95% of SERS signal

- Au: yellow
- PMMA: purple
- 5 Å grid size

– 7x7 nm2 area of adsorbates per “hot spot”
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SERS Spectra of Benzenethiol From 
Nanoassembled  Regions
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Possible Extension of Nanoassembly 
Novel Nanoshapes

• Surface field enhancement depends strongly on 
nanoparticle shape

– Sharp corners and tips help to focus fields to form 
hhot spots

Increasing Surface Field Enhancement from Simulations
|Emax|/|Einc|

Previous work
Yang, et al.

25 70 140

• Based on previous work, custom synthesis of non-
spherical particles in solution is feasiblespherical particles in solution is feasible
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Direct Nanocone Patterning of SERS 
Structures

• As an alternative to templated nanoassembly, we fabricated 
metal structures using direct metal depositionmetal structures using direct metal deposition

– Interference lithography used to pattern openings in a 
dielectric stack

• Offers flexibility of different metal depositions
– Not only Au but also Ag

• No lift-off: metal surface is not exposed to chemicals

• Potential for formation of 3-dimensional structuresPotential for formation of 3 dimensional structures
– Cone tips inside cavities
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Nanocone Array Fabrication

200 nm 200 nm 200 nm

A B C D
Stack deposition Litho exposure/develop RIE O2 etch Ag/Au deposition
- 55 nm SOG/80 nm 
AR3/Si Wafer

- Two cross exposures
- TMAH development

- Through AR3 - E-beam assisted
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SEMs of Final 3-D Nanostructures

100 nm 200 nm
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SERS Uniformity Mapping

• Benzenethiol treated Ag• Benzenethiol-treated Ag 
– 532-nm excitation
– 30 m measurement spot
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Summary of Average SERS Enhancement 
Factors

Array of 3-D 
nanostructures

• Analyte: adsorbed benzenethiol
• Wavelength: 785 nm (Au), 532 nm (Ag)
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Summary

• Developed two methods of fabricating high-density of 
SERS “hot spots” 

Nanoassembly assisted fabrication technique decouples– Nanoassembly-assisted fabrication technique decouples 
shape/material optimization from placement

– Direct pattern/deposition techniques offers the possibility of p p q p y
tailored 3-D structures for optimum field enhancement

• Techniques are scalable to wafer-size area with high 
throughputthroughput

– Multiple mm2 areas with step-and-repeat

• Demonstrated average enhancement factors of > 5x106 over g
mm2 areas

– Comparable to state-of-the art over large areas
– Further optimization should improve performance
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