Design, Fabrication, Assembly and Characterization of a SWNT Switch for Non-volatile Memory Applications

Sivasubramanian Somu, Taehoon Kim, Peter Ryan, Luciano Silvestri, Ahmed Busnaina, Nick McGruer \& George Adams

Center for High-rate Nanomanufacturing

$\begin{array}{llllllllll}U & N & I & V & E & R & S & I & T & Y\end{array}$

Director: Ahmed Busnaina, NEU
Deputy Director: Joey Mead, UML, Associate Directors: Carol Barry, UML; Nick McGruer, NEU; Glen Miller, UNH; Jacqueline Isaacs, NEU

Outline

$>$ State of Art
Bi-stable Switch-Principle of Operation
Fabrication
Directed Assembly
$>$ Actuation
$>$ Product Attributes
> Summary

Beyond the ITRS Road map?

Transistor Scaling and Research Roadmap

CMOS Scale Limits and Power Considerations

CMOS is projected to be with us for the next 15 years.

Theoretical ${ }^{\mathbf{1}}$ parameters at $\mathbf{T}=\mathbf{T}_{\text {room }}$

characteristic dimension of 1.5 nm , switching energy of 0.017 eV switching speed of 0.04 pico sec.

Theoretical ${ }^{\mathbf{1}}$ results:

1% duty cycle \&
1% active transistors
Heat generated is $\sim 370 \mathrm{~W} / \mathrm{cm}^{2}$

1. Zhirnov, V., et. al., Proceedings IEEE, Nov. 2003

Nanoelectronics Challenges Examples of Non-

Charge Based Switches
 Novel Devices
 What are we looking for?

- Required characteristics:
- Scalability
- Performance
- Energy efficiency
- Gain
- Operational reliability
- Room temp. operation
- Preferred approach:
- CMOS process compatibility
- CMOS architectural compatibility

Alternative state variables

- Spin-electron, nuclear, photon
- Phase
- Quantum state
- Magnetic flux quanta
- Mechanical deformation
- Dipole orientation
- Molecular state

NEMS-Non volatile Design

NRAM B Nantero

-Product (2004)
-SWNT Fabric

- Spin coated (Room Temperature)

$$
\mathrm{V}_{\mathrm{Read}}<1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{ON}} / \mathrm{R}_{\mathrm{OFF}} \sim 10^{5}
$$

NEMS-Principle of operation

NRAM

WRITE

$\mathrm{V}_{\text {write }}=7 \mathrm{~V}$,
Closed Circuit $\rightarrow \mathrm{R}_{\text {Low }}$ van der Waals attraction,

ERASE:

$\mathrm{V}_{\text {Erase }}=30 \mathrm{~V}$
Open Circuit $\rightarrow \mathrm{R}_{\text {High }}$

-Memory Element

DOUBLE NANOTUBE

WRITE

$\mathrm{V}_{\text {write }}=4.5 \mathrm{~V}$,
Closed Circuit $\rightarrow \mathrm{R}_{\text {Low }}$ van der Waals attraction,

ERASE:
$\mathrm{V}_{\text {Erase }}=20 \mathrm{~V}$
Open Circuit $\rightarrow \mathrm{R}_{\text {High }}$

-Memory Element

NEMS-Volatile Design

- Research Prototype 2005
- Capacitive based
- MWNT Pillars
- CVD grown (High Temperature)

Cantilever

- Research Prototype 2004
- Resistive based
- MWNT
- Spin coated \& CVD growth

NEMS \rightarrow Embedded Applications. \rightarrow Expected to replace DRAM

NEMS-Principle of operation

Vertical Nanoswitch :

Write:
Apply 0.1 V to Drain; Apply gate voltage to the 4.5 V \rightarrow CNT of Drain begins to bend and contacts the source \rightarrow Capacitor gets charged
Erase:
Removal of gate voltage \rightarrow Repulsive electrostatic force Drain nanotube springs back. $\boldsymbol{\rightarrow}$ Capacitor Discharges

NEMS Cantilever

Write:
22 V , tunneling current, 0.7 nm gap

Erase
<2V, open circuit 100 nm gap

NEMS - State of the Art

Large ~30nm MWNT

Only 3 Sweeps!
S. N. Cha, J. E. Jang, Y. Choi, G. A. J. Amaratunga, D. J. Kang, D. G. Hasko, J. E. Jung, and J. M. Kim, "Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube," Applied Physics Letters, vol. 86, p. 083105, 2005.

Serial Process SWNT

Only 3 Sweeps!
A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, "Electromechanical carbon nanotube switches for high-frequency applications," Nano Lett, vol. 6, pp. 942-947, 2006.

Huge 70nm MWNTs

1 micron

Jang, S. Cha, Y. Choi, G. Amaratunga, D. Kang, D. Hasko, J. Jung, and J. Kim,
"Nanoelectromechanical switches with vertically aligned carbon nanotubes," Applied Physics Letters, vol. 87, p. 163114, 2005
R. F. Smith, T. Rueckes, S. Konsek, J. W. Ward, D. K. Brock, and B. M. Segal, "Carbon nanotube based memory development and testing," 2007, pp. 1-5.

Bistable Nano

Electromechanical
 Switch

Bistable SWNT Nanoswitch

Schematic diagram

Top View of fabricated device

Switch array schematic

Advantages:

- Non charge based device
- Non volatile
- Minimal fabrication steps
- Operational frequency in terahertz
- Stand alone RS flip Flop
- Radiation hard
- Very robust.
- Switching at the same vc

Center for High-rate Nanomanufacturing

Principle of Operation

State I

State II

$6 / 24 / 2010$

Template Fabrication

Directed assembly of SWNT

Dielectrophoretic Assembly of SWNTs

* Dielectrophoretic force ($\mathrm{F}_{\mathrm{DEP}}$)

$$
\begin{gathered}
\mathrm{F}_{\mathrm{DEP}}=\frac{\pi}{6} \mathrm{r}^{2} l \varepsilon_{\mathrm{m}} \operatorname{Re}\{\mathrm{~K}(\omega)\} \nabla \mathrm{E}_{\mathrm{rms}}^{2} \\
\mathrm{~K}(\omega)=\left(\frac{\varepsilon_{\mathrm{p}}^{*}-\varepsilon_{\mathrm{m}}^{*}}{\varepsilon_{\mathrm{m}}^{*}}\right)
\end{gathered}
$$

I: Length of rod-like particle, r: Radius of rod-like particle
ε_{m} : Real permittivity of suspending medium
$E_{r m s}$: Root mean square (rms) of the electric field
$K(\omega)$: Clausius-Mosotti factor

Dielectrophoretic Assembly of SWNTs

* Conventional Dielectrophoretic Assembly Process of CNT

\checkmark Changed the electrode configuration.
\checkmark Introduced a phase shifter at the ground electrode with the potential being opposite in phase with that of the phase electrode.
\checkmark Drying a drop of CNT solution by employing stream line of $\mathbf{N}_{\mathbf{2}}$.

Dielectrophoretic Assembly of SWNTs

* Modifications of Assembly Process of CNT

Simulation

Changes of the electrode configuration:
(a) initial
(b) transition
(c) final

Dielectrophoretic Assembly of SWNTs

* Modifications of Assembly Process of CNT

Phase Configuration

(a)

Phase Configuration

Results of introducing a phase shifter at the ground electrode (electrode-B) being opposite in phase with that of the phase electrode (electrode-A)

Dielectrophoretic Assembly of SWNTs

*Modified Dielectrophoretic Assebmly Process of CNT

Dielectrophoretic Assembly of SWNTs

Problem: For a shallow trench during drying process the surface tension of the liquid (water) pulls in the SWNT into the trench causing short circiuted.

Solution:

Use a Critical point Dryer (CPD).

* Critical Point Dryer

\checkmark To make CNTs suspended above trenches
\checkmark Dry process at critical point in $\mathbf{C O}_{\mathbf{2}}$ phase diagram
\checkmark No phase transition

$$
\begin{gathered}
\text { Actuation } \\
\text { Preliminary } \\
\text { Results }
\end{gathered}
$$

Actuation in Ambient Conditions

Top view SEM prior to testing in lab air

Topdwiew SEM after testing in lab air

80 Degree SEM after testing in lab air

\rightarrow Organic contamination build up
\rightarrow Device needed to be tested in Nitrogen enviro

Center for High-rate

Actuation Schematic

Time

Center for High-rate
Nanomanufacturing

Product
 Attributes

Product Attributes

Bit density: Current Status (Concept; Prototype; Production)

	NRAM	Bistable Nanoswitch	Cantilever	Vertical Nanoswitch	Double Nanotube*	NAND Flash
Feature Size	180 nm	180 nm	500 nm	No Data	10 nm	40 nm
Factor	6F ${ }^{2}$	$12 \mathrm{~F}^{2}$	6F ${ }^{2}$	No data	$6 \mathrm{~F}^{2}$	$4 \mathrm{~F}^{2}$
Cell Size	$0.19 \mu \mathrm{~m}^{2}$	$0.38 \mu^{2}$	$1.5 \mu \mathrm{~m}^{2}$	No data	$0.0006 \mu \mathrm{~m}^{2}$	$0.0064 \mu \mathrm{~m}^{2}$
Storage density	3.09Gb/in ${ }^{2}$	$1.55 \mathrm{~Gb} / \mathrm{in}^{2}$	$0.6 \mathrm{~Gb} / \mathrm{in}^{2}$	$2.5 \mathrm{~Gb} / \mathrm{in}^{2}$	1000Gb/in ${ }^{2}$	62.9Gb/in ${ }^{2}$

Cell factor remains same with scaling down $\quad * \rightarrow$ Has never been fabricated (estimated

Power Consumption

Energy/ Power	NRAM	Bi stable	Cantilever	Vertical Nanoswitch	Double Nanotube*	NAND Flash
Read	$\begin{aligned} & 1.5 \mathrm{fJ} / \\ & 0.15 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{fj} / \\ & 0.15 \mu \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 f \mathrm{~J} / \\ & 0.025 \mu \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1zJ-0.16fJ/ } \\ & 1 \mathrm{pW}-0.1 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{fJ} / \\ & 0.15 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.165 \mathrm{~nJ} / \\ & 3300 \mu \mathrm{~W} \end{aligned}$
Write	$\begin{aligned} & \hline 7 \mathrm{fJ} / \\ & \mathbf{0 . 7 \mu \mathrm { W }} \end{aligned}$	$\begin{aligned} & \hline 4.5 \mathrm{f} / \mathrm{J} / \\ & 0.45 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 2.3 \mathrm{fJ} / \\ & 0.23 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & 7.2 \mathrm{f} \mathrm{~J} / \\ & 4.5 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 4.5fJ/ } \\ & 0.45 \mu \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.87 \mathrm{~nJ} / \\ & 2 \mu \mathrm{~W} \end{aligned}$
Erase	$\begin{aligned} & \text { 30fJ/ } \\ & \mathbf{3 \mu W} \end{aligned}$	$\begin{aligned} & \text { 4.5fJ/ } \\ & 0.15 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{zJ} / \\ & 0.2 \mathrm{pW} \end{aligned}$	$\begin{aligned} & \hline \mathbf{1 6 0 \mathrm { zJ } /} \\ & \mathbf{1 \mathrm { pW }} \end{aligned}$	$\begin{aligned} & 20 \mathrm{fJ} / \\ & 2 \mu \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 0.33 \mathrm{~nJ} / \\ & 3.3 \mu \mathrm{~W} \end{aligned}$

\rightarrow Power decreases non-linearly with scaling down $\quad * \rightarrow$ Estimated values

Product Attributes

Read, Write, Erase Time

\rightarrow High speed, faster than flash and comparable to SRAM
\rightarrow Speed increases non linearly with scaling down

Speed	NRAM	Bistable	Cantilever	Vertical Nanoswitch	Double Nanotube*	NAND Flash
Read	10 ns	10 ns	$1-10 \mathrm{~ns}$	$1.3 \mathrm{~ns}-16 \mathrm{~ns}$	0.01 ns	30 μ s/4224bits
Write	10 ns	10 ns	$1-10 \mathrm{~ns}$	$1.3 \mathrm{~ns}-16 \mathrm{~ns}$	0.01 ns	$200 \mu \mathrm{~s} / 4224 \mathrm{bits}$
Erase	10 ns	10 ns	$1-10 \mathrm{~ns}$	$1.3 \mathrm{~ns}-16 \mathrm{~ns}$	0.01 ns	$2 \mathrm{~ms} / 135168 \mathrm{bits}$

\rightarrow Non destructive read (No rewrite)

* \rightarrow Have never been fabricated (estimated values)

Endurance

- Devices have cycled ~ 5X107 ${ }^{7}$ for Write/Erase and $\sim 1.5 \mathrm{X} 10^{8}$ Read with no failure issues.
- Others devices are expected to have similar endurances.

Flash endurance is only 10^{5} cycles

Summary

$>$ Have fabricated a Bi-stable switch for memory and logic application
$>$ Employed a modified Dielectrophoresis process for assembly of SWNTs
$>$ Switch actuation showed that the switch is nonvolatile
$>$ Switch actuation showed that the switch is indeed bi-stable
$>$ Switch actuation is carried out at low voltage $(\sim 5 \mathrm{~V})$

