Design, Fabrication, Assembly and Characterization of a SWNT Switch for Non-volatile Memory Applications

Sivasubramanian Somu, Taehoon Kim, Peter Ryan, Luciano Silvestri, Ahmed Busnaina, Nick McGruer & George Adams

Director: Ahmed Busnaina, NEU

Deputy Director: Joey Mead, UML, Associate Directors: Carol Barry, UML; Nick McGruer, NEU; Glen Miller, UNH; Jacqueline Isaacs, NEU

Outline

- > State of Art
- Bi-stable Switch-Principle of Operation
- > Fabrication
- Directed Assembly
- Actuation
- Product Attributes
- > Summary

Beyond the ITRS Road map?

Transistor Scaling and Research Roadmap

CMOS Scale Limits and Power Considerations

CMOS is projected to be with us for the next 15 years.

Theoretical¹ parameters at $T=T_{room}$ characteristic dimension of 1.5 nm, switching energy of 0.017 eV switching speed of 0.04 pico sec.

Theoretical¹ results:

1% duty cycle &

1% active transistors

Heat generated is ~ 370W/cm²

1. Zhirnov, V., et. al., Proceedings IEEE, Nov. 2003

Nanoelectronics Challenges Examples of Non-Charge Based Switches

Novel Devices What are we looking for?

- Required characteristics:
 - Scalability
 - Performance
 - Energy efficiency
 - Gain
 - Operational reliability
 - Room temp. operation
- Preferred approach:
 - CMOS process compatibility
 - CMOS architectural compatibility

Alternative state variables

- Spin–electron, nuclear, photon
- Phase
- Quantum state
- Magnetic flux quanta
- Mechanical deformation
- Dipole orientation
- Molecular state

NEMS-Non volatile Design

NRAM

- •Product (2004)
- •SWNT Fabric
- •Spin coated (Room Temperature)

 $V_{Read} < 1.5 \text{ V}; R_{ON}/R_{OFF} \sim 10^5$

- •Concept (2000)
- •Two single SWNT

Expected $V_{Read} < 100 \text{ mV}$; $R_{ON}/R_{OFF} \sim 10^5$

NEMS → Memory & Embedded Applications.

NEMS-Principle of operation

NRAM

WRITE

V_{write}=7V, Closed Circuit → R_{Low} van der Waals attraction,

ERASE:

V_{Erase}=30V Open Circuit → R_{High}

•Memory Element

DOUBLE NANOTUBE

WRITE

 V_{write} =4.5V, Closed Circuit \rightarrow R_{Low} van der Waals attraction,

ERASE:

V_{Erase}=20V Open Circuit → R_{High}

•Memory Element

NEMS-Volatile Design

- Research Prototype 2005
- Capacitive based
- MWNT Pillars
- CVD grown (High Temperature)

- Research Prototype 2004
- Resistive based
- MWNT
- Spin coated & CVD growth

NEMS → Embedded Applications. → Expected to replace DRAM

NEMS-Principle of operation

Vertical Nanoswitch:

Write:

Apply 0.1V to Drain; Apply gate voltage to the 4.5V

- →CNT of Drain begins to bend and contacts the source
- → Capacitor gets charged

Erase:

Removal of gate voltage → Repulsive electrostatic force Drain nanotube springs back. → Capacitor Discharges

NEMS Cantilever

Write:

22V, tunneling current, 0.7nm gap

Erase

<2V, open circuit 100nm gap

NEMS – State of the Art

Large ~30nm MWNT

Only 3 Sweeps!

S. N. Cha, J. E. Jang, Y. Choi, G. A. J. Amaratunga, D. J. Kang, D. G. Hasko, J. E. Jung, and J. M. Kim, "Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube," *Applied Physics Letters*, vol. 86, p. 083105, 2005.

Serial Process SWNT

Only 3 Sweeps!

A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, "Electromechanical carbon nanotube switches for high-frequency applications," *Nano Lett, vol. 6, pp. 942-947, 2006.*

Huge 70nm MWNTs

V_{2nd}=0.05V V_{2nd}=0.05V V_{2nd}=0.05V V_{2nd}=0.05V

Matt of SWNTs

50 million Cycles! ~10ns Response Time

R. F. Smith, T. Rueckes, S. Konsek, J. W. Ward, D. K. Brock, and B. M. Segal, "Carbon nanotube based memory development and testing," 2007, pp. 1-5.

Bistable Nano Electromechanical Switch

Bistable SWNT Nanoswitch

Schematic diagram

Top View of fabricated device

Switch array schematic

Advantages:

- Non charge based device
- Non volatile
- Minimal fabrication steps
- Operational frequency in terahertz
- Stand alone RS flip Flop
- Radiation hard
- Very robust.
- •Switching at the same vo

Principle of Operation

Nanomanufacturing

Template Fabrication

Directed assembly of SWNT

Dielectrophoretic force (F_{DEP})

$$F_{DEP} = \frac{\pi}{6} r^2 l \epsilon_m Re \{ K(\omega) \} \nabla E_{rms}^2$$

$$K(\omega) = \left(\frac{\varepsilon_{p}^{*} - \varepsilon_{m}^{*}}{\varepsilon_{m}^{*}}\right)$$

I: Length of rod-like particle, r: Radius of rod-like particle

 ϵ_m : Real permittivity of suspending medium

E_{rms}: Root mean square (rms) of the electric field

 $K(\omega)$: Clausius-Mosotti factor

• DEP force strongly depends on the electric field gradient, ΔE_{rms} .

Conventional Dielectrophoretic Assembly Process of CNT

- ✓ Changed the electrode configuration.
- ✓ Introduced a phase shifter at the ground electrode with the potential being opposite in phase with that of the phase electrode.
- ✓ Drying a drop of CNT solution by employing stream line of N₂.

Modifications of Assembly Process of CNT

Simulation

Changes of the electrode configuration:

- (a) initial
- (b) transition
- (c) final

Modifications of Assembly Process of CNT

Results of introducing a phase shifter at the ground electrode (electrode-B) being opposite in phase with that of the phase electrode (electrode-A)

Modified Dielectrophoretic Assebmly Process of CNT

Problem: For a shallow trench during drying process the surface tension of the liquid (water) pulls in the SWNT into the trench causing short circuited.

Use a Critical point Dryer (CPD).

Critical Point Dryer

- √ To make CNTs suspended above trenches
- ✓ Dry process at critical point in CO₂ phase diagram
- √ No phase transition

Actuation Preliminary Results

Actuation in Ambient Conditions

Top/view SEM after testing in lab air

80 Degree SEM after testing in lab air

- → Organic contamination build up
- → Device needed to be tested in

 Nitrogen enviro

 Center for High-rate Nanomanufacturing

Actuation Schematic

Product Attributes

Product Attributes

Bit density: Current Status (Concept; Prototype; Production)

	NRAM	Bistable Nanoswitch	Cantilever	Vertical Nanoswitch	Double Nanotube*	NAND Flash
Feature Size	180nm	180nm	500nm	No Data	10nm	40nm
Factor	6F ²	12F ²	6F ²	No data	6F ²	4F ²
Cell Size	0.19µm ²	$0.38\mu m^2$	1.5µm ²	No data	0.0006µm ²	$0.0064 \mu m^2$
Storage density	3.09Gb/in ²	1.55Gb/in ²	0.6Gb/in ²	2.5Gb/in ²	1000Gb/in ²	62.9Gb/in ²

[→] Cell factor remains same with scaling down

Power Consumption

Energy/ Power	NRAM	Bi stable	Cantilever	Vertical Nanoswitch	Double Nanotube*	NAND Flash
Read	1.5fJ/	1.5fJ/	0.25fJ/	1zJ-0.16fJ/	1.5fJ/	0.165nJ/
	0.15 μW	0.15 μW	0.025μW	1pW-0.1μW	0.15 μW	3300 μW
Write	7fJ/	4.5fJ/	2.3fJ/	7.2fJ/	4.5fJ/	1.87nJ/
	0.7μW	0.45μW	0.23 μW	4.5 μW	0.45μm	2 μW
Erase	30fJ/	4.5fJ/	2zJ/	160zJ/	20fJ/	0.33nJ/
	3 μW	0.15 μW	0.2pW	1pW	2 μW	3.3 μW

[→] Power decreases non-linearly with scaling down

^{* →} Has never been fabricated (estimated values)

^{* →} Estimated values

Product Attributes

Read, Write, Erase Time

→ High speed, faster than flash and comparable to SRAM

→ Speed increases non linearly with scaling down

Speed	NRAM	Bistable	Cantilever	Vertical Nanoswitch	Double Nanotube*	NAND Flash
Read	10ns	10ns	1-10ns	1.3ns-16ns	0.01ns	30μs/4224bits
Write	10ns	10ns	1-10ns	1.3ns-16ns	0.01ns	200μs/4224bits
Erase	10ns	10ns	1-10ns	1.3ns-16ns	0.01ns	2ms/135168bits

→ Non destructive read (No rewrite)

*

Have never been fabricated (estimated values)

Endurance

- Devices have cycled ~ 5X10⁷ for Write/Erase and
- ~1.5X10⁸ Read with no failure issues.
- •Others devices are expected to have similar

endurances.

NAND write and erase is in Pages and Blocks

Flash endurance is only 10⁵ cycles

Summary

- > Have fabricated a Bi-stable switch for memory and logic application
- > Employed a modified Dielectrophoresis process for assembly of SWNTs
- > Switch actuation showed that the switch is nonvolatile
- > Switch actuation showed that the switch is indeed bi-stable
- > Switch actuation is carried out at low voltage (~5V)

