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Self-Assembled Monolayers

Applications: Corrosion protection, biomimicry, tailoring of wetting properties of

surfaces, chemical sensors, modification of electrodes for organic electronics, molecular
electronics, nanotemplating/nanomanufacturing.
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Electron Spectroscopies

Electron Spectroscopies for Surface Analysis Universal Inelastic Mean Free Path Curve
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The photoelectron intensity (/) emitted at an angle 6 relative to the surface plane,
from depths less than d, is given by:

I=1, exp {-d/(Acos (90 - 0))}
where [, is the intensity from an infinitely thick, uniform substrate and A is the mean

free path.
95% of the signal originates from a depth less than 3A.




Ultraviolet Photoelectron Spectroscopy

The Work Function of a Sample Can be Calculated
from the Width of the UPS Spectrum
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Experimental Apparatus
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Topics to be Discussed

Using thiol SAMs to pattern polymers, biomaterials, and
conjugated oligomers.

Comparison of thermal stability of thiol and silane
monolayers.

Sandwich structures using a mercaptosilane.

Light-switchable functionalization for nanomanufacturing.




The goal 1s to use self-assembly of
alkanethiols as templates for materials
that are not easily patterned by other
means.

Microcontact printing and dip-pen

nanolithography are used to form
patterned arrays of alkanethiol
monolayers on gold surfaces.

The arrays of patterned alkanethiols
affect the wetting properties of the
surface so that spin-coated material
selectively wets or de-wets the

alkanethiol patterns.

Table 1. Properties of Alkanethiol-Covered Gold Surfaces and
These Surfaces after Spin-Coating PE-b-PEO Block Copolymers
onto Them (Without Annealing)

C/Au atomic C/Au atomic
6 (adv) O (rec) ratio for 80/20  ratio for 20/80
alkanethiol water water PEO/PE block® PEO/PE block?

ODT 113+£1 97+£3 . infinite
PFDT 109+3 85+1 49
MHDA 74£3 402 infinite 19

4 The polymer was spin-coated using a 0.5 wt % solution in chloroform.
b The polymer was spin-coated using a 0.4 wt % solution in toluene
(warm solution).

A. Chandekar, S.K. Sengupta, C.M.F. Barry, J.L. Mead, J.E. Whitten, Langmuir, 2006, 22, 8071




Microcontact Printing

A technique that generates patterned self-assembled monolayers of alkanethiolates on
metal surfaces (gold, silver and copper).

*An "ink" of alkanethiols is spread on a patterned PDMS stamp.

*The stamp is then brought into contact with the substrate.

*The thiol ink is transferred to the substrate where it forms a self-assembled monolayer that can
act as a resist against etching.
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Patterning of Conjugated Polymers and Biomaterials
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Use of Dip-Pen Nanolithography to Pattern a Conjugated Oligomer

Molecular

Transport Direction

< 5nm

http://www.chem.northwestern.edu/~mkngrp/dpn. htm

A. Chandekar and J.E. Whitten, Appl. Phys. Lett., 2007, 91, 113103




Topics to be Discussed

Using thiol SAMs to pattern polymers, biomaterials, and
conjugated oligomers.

Comparison of thermal stability of thiol and silane
monolayers.

Sandwich structures using a mercaptosilane.

Light-switchable functionalization for nanomanufacturing.




Thermal Stability of Silane SAMs on Silicon Oxide/Si(111)

SH SH
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(CH;CH,0);SiCH,CH,CF,CF,CF,CF,CF,CF,CF,CF;  PFDS

A. Chandekar, S.K. Sengupta, J.E. Whitten, Appl. Surf. Sci., 2010, 256, 2742.




XPS of Heating of ODT/Au(111) SAM
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Preparation of Silane Monolayers

Si(111) substrates were:

Ultrasonicated in methanol and acetone and then etched in pirahna solution at
80°C for 30 min. This procedure removes the native oxide and grows a fresh
hydroxylated surface.

Soaked in DI water to remove residual acid.

Exposed to UV-o0zone using a Novascan PSD-UV cleaner for 20 min to
produce a clean, hydroxylated surface for silanization.

Immersed in 1 mM silane solution in anhydrous hexane for 16 hr.

Rinsed with anhydrous hexane.




Thermal Stability of Silane SAMs on Silicon Oxide/Si(111)

SH SH
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A. Chandekar, S.K. Sengupta, J.E. Whitten, Appl. Surf. Sci., 2010, 256, 2742.




XPS of Heating of ABTES/Si(111) SAM
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Conclusions

Monolayer/Surface Decomposition Onset

ODT/Au 110 - 145°C

MHDA/Au 145°C

PFDT/Au 145-165°C

ABTES/S1 250°C

PFDS/S1 350°C

A. Chandekar, S.K. Sengupta, J.E. Whitten, Appl. Surf. Sci., 2010, 256, 2742.




Silane-Directed Patterning
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A. Chandekar, S.K. Sengupta, J.E. Whitten, Appl. Surf. Sci., 2010, 256, 2742.




Topics to be Discussed

Using thiol SAMs to pattern polymers, biomaterials, and
conjugated oligomers.

Comparison of thermal stability of thiol and silane
monolayers.

Sandwich structures using a mercaptosilane.

Light-switchable functionalization for nanomanufacturing.




An Interesting Molecule

I S - CHZ— CH‘_)_ CH‘_) - Si_ O(‘H3

3-Mercaptopropyltrimethoxysilane (MPS)




XPS Confirms Bond Formation for Gold Deposited on MPS

MgKa XPS Spectra of the S 2p Region for Gold Deposited
on 3-Mercaptopropyltrimethoxysilane (MPS) Films
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J. Singh, J.E. Whitten, J. Phys. Chem. C., 2008, 112, 19088.




UPS of Gold Deposition on MPS

Work function vs. Gold Coverage
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Force-Distance Measurements

Pull-off Force Curves for an MPS Surface
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Summary of Jump-In and Pull-Off AFMS tudies for Gold-Coated Tips and Silane Films

Silane System Mean Jump-In Force (nN) Mean Pull-Off Force (nN)

Octadecyltrichlorosilane 133 +/- 46 107 +/-25

Mer captopropyltrimethoxysilane| 340 +/- 86 409 +/-48

J. Singh, J.E. Whitten, J. Phys. Chem. C., 2008, 112, 19088.
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Conclusions

Patterning of a wide variety of materials may be achieved if a
sufficient contrast in wetting properties is obtained on the surface by
chemical modification (e.g., thiol or silane SAMs).

Silane SAMs on silicon oxide surfaces are substantially more
thermally stable than thiol SAMs on metal surfaces.

Light may be used on photocatalytic surfaces (e.g, TiO,) to induce
hydrophilicity - believed to be due to decomposition/desorption of
hydrocarbons. Photomasking can be used to achieve contrast in
hydrophobicity and patterning.

Light switchable functionalization is being pursued for nanotransfer
applications.
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