Tooling for Injection Molded Micro and Nanoscale Features

Carol Forance Barry

Center for High-Rate Nanomanufacturing University of Massachusetts Lowell

Devices Containing Small Features

Micro and nanofluidic devices

Possible Manufacturing Technologies

	Hot Embossing	Nanoimprint	Injection Molding
Materials	thermoplastics	thermoplastics or thermosets	thermoplastics or thermosets
Pressure	> 10 MPa	< 0.1 MPa	> 50 MPa
Temperature	> T _g	~25°C	150-400°C
Cycle time	1-10 min.	2 min.	3-14 s
Minimum Feature Size	50 nm high aspect ratio	< 157 nm low aspect ratio	Depends on tooling

Possible Manufacturing Technologies

	Hot Embossing	Nanoimprint	Injection Molding
Materials	thermoplastics	thermoplastics or thermosets	thermoplastics or thermosets
Pressure	> 10 MPa	< 0.1 MPa	> 50 MPa
Temperature	> T _g	~25°C	150-400°C
Cycle time	1-10 min.	2 min.	3-14 s
Minimum Feature Size	50 nm high aspect ratio	< 157 nm low aspect ratio	Depends on tooling

Injection molding can provide high-rate manufacturing of a wide range of materials

Approach: Injection Molding

injection molding machine

molded part

Quantifying Replication

Feature definition

Depth ratio $DR = \frac{D_{part}}{D_{tool}}$

Inj. Molding: It's All About the Tooling

Factors

- 1. Gate location
- 2. Vacuum venting
- 3. Tooling features
- 4. Tooling materials
- Gas assisted injection molding

1. Impact of Gate Location

Yoon et al., *Polym. Eng. Sci.*, 50(2), 411 (2010)

2. Effect of Vacuum Venting

Channels without vacuum

Channels with vacuum

Better corner replication with vacuum venting

Yoon et al., *International Polymer Processing,* accepted (2009) Padmanabha et al., *Proc. Ann. Tech. Conf. Soc. Plast. Eng.,* (2008)

3. Tooling Features

Thermoplastic	DR		
Elastomer	Positive	Negative	
COPE	1.03	0.60	
TPU-45	0.87	0.67	
TPU-39	0.75	0.68	

Poorer replication with negative features

Yoon et al., Rubber Expo & 176th Technical Meeting, ACS Rubber Division, October 13-15 (2009).

Effect of Feature Size

Yoon et al., Proc. SPIE, 5763, 107-116 (2005)

4. Materials for Tooling Inserts

Method	Resolution	Aspect Ratio Material		
CNC machining	100 µm			
Micro milling	50 -100 μm	N/A	steel	
Micro wire EDM	1 - 50 μm			
Electroforming	~ 20 nm	~2.5	nickel alloys	
Lithography - UV	157 nm			
Lithography - EUV	13 nm	typically low, but up to 30 ¹	silicon, glass	
Lithography - E-beam	< 10 nm			

Created hybrid tooling for better feature replication

¹ RIE inductive coupled plasma source (http://www.oxfordplasma.de/process/sibo_ha.htm)

Molding with Nickel Tooling

CD/DVD molding
Incomplete replication
Max. DR ~ 0.80 (PC)

Molding with DVD tooling

Material-dependent replication

Polymer	R _g , nm	DR
PMMA	3.9	0.91
PC	6.5	0.80
PS	14	0.60

molded part

Srirojpinyo, Dissertation, 2005; Srirojpinyo et al. Proc. Ann. Tech. Conf. Soc. Plast. Eng. (2004)

Factors Affecting Replication

- Replication of feature depth (i.e., DR) depends on material viscosity
- Replication of channel bottom depends on solidification time
- Replication of lands depends on achieving DR = 100%

Thiruvenkataswamy et al., Proc. Ann. Tech. Conf. Soc. Plast. Eng., 2463 (2008)

Molding with Silicon Wafers

PTFE prevented fracture of fragile tooling inserts → 3000 molding cycles

Yoon et al., Proc. Ann. Tech. Conf. Soc. Plast. Eng., 738-742 (2004)

Effect of Backing Material

PTFE backing

Cu backing

Solidification time: 14 s Solidification time: < 1 s PTFE retarded heat transfer from silicon insert to steel mold Yoon et al., *Proc. SPIE*, 6380, (2006)

Molding with Hybrid Tooling

Fabrication of Hybrid Tooling

International Patent Application Serial No. PCT/US09/40890

Feature Definition with Hybrid Tooling

Si-FOTS

AI-PC

Yoon et al., Proc. IMECE09, November 13-19, Lake Buena Vista, Florida (2009)

Depth Ratio with Hybrid Tooling

Hybrid tooling enhanced replication, but deformed during molding

Yoon et al., Proc. Ann. Tech. Conf. Soc. Plast. Eng., 2473 (2008)

New Polymer Layers

- Candidate polymers
 - Polyetherimide (T_g: 216°C)
 - Polyimide (T_g: 350°C)
 - Thermosets (Epoxy)

Performance of polymer layers

Property	Units	PC	PI-1	PI-2
Thickness	μm	500	400	100
T _a	°C	151	369	>400
Performance		Good	Good	Poor

New Polymer Layers

- Candidate polymers
 - Polyetherimide (T_g: 216°C)
 - Polyimide (T_g: 350°C)
 - Thermosets (Epoxy)

Performance of polymer layers

Property	Units	PC	PI-1	PI-2
Thickness	μm	500	400	100
T _a	°C	151	369	>400
Performance		Good	Good	Poor

PI-1 was better than PI-2 in transferring pattern

Parts Molded from PI Hybrid Tooling

PC

- Molded parts' surfaces were not damaged
- No loss in feature definition over 1000 cycles

Kim et al., Proc. Ann. Tech. Conf. Soc. Plast. Eng., 2143 (2010)

Effect of Molding Cycles on DR

PI-based tooling provided consistent DRs for 1000 molding cycles Kim et al., *Proc. Ann. Tech. Conf. Soc. Plast. Eng.*, 2143 (2010)

Temperature at the Tooling Surface

Slower cooling enhanced replication

Kim et al., Proc. Ann. Tech. Conf. Soc. Plast. Eng., 2143 (2010)

Effect of Molding on Hybrid Tooling

Before molding After 1000 PS molding After 1000 PC molding

Tooling surface was not deformed, but showed defects

Kim et al., Proc. Ann. Tech. Conf. Soc. Plast. Eng., 2143 (2010)

Analysis of Tooling Surface

SEM

LIMASS

UMASS

A

Polymer Only Tooling?

with PI-AI hybrid tooling with PI "hybrid" tooling (after 1,000 cycles) (after 100 cycles) Tooling without metal coating produced scaly surfaces

Comparison of Tooling Materials

5. Effect of Gas Assisted Injection Molding

GAIM improved depth ratio

Yoon et al., *Plastics, Rubber and Composites: Macromolecular Engineering*, accepted (2010) Palanisamy et al., *Proc. Ann. Tech. Conf. Soc. Plast. Eng.*, 1316 (2009)

Effect of Gas Assisted Inj. Molding

GAIM eliminated sink marks in polypropylene parts

Yoon et al., *Plastics, Rubber and Composites: Macromolecular Engineering*, accepted (2010) Palanisamy et al., *Proc. Ann. Tech. Conf. Soc. Plast. Eng.*, 1316 (2009)

Conclusions

- Gate location often produces hesitation
- Vacuum venting improves feature definition
 - Tooling features
 - Positive features provide better replication than negative features
 - Smaller features are more difficult to replicate
 - Tooling materials
 - Retarding heat transfer enhances replication
- Gas assisted injection molding
 - Improves replication, particularly with semi-crystalline polymers

Path Forward

- Effects of feature angles, radii, and size
- Impact of surface roughness
 - Silicon, steel

Acknowledgements

- National Science Foundation
- Nypro, Inc.
- Nissei America, Inc.; Metrigraphics; Bayer Corp.
- Sung-hwan Yoon, Joey Mead, Stephen Johnston, Jun Lee, Michael Alabran, Brian Beaudoin, Daniel Dempsey, Nicholas George, Younghyo Kim, Jeffrey Rawson, Purushotham Padmanabha, Prabhu Palanisamy, Chinnawat Srirojpinyo, Rajkumar Thiruvenkataswamy, University of Massachusetts Lowell
- Jin-Goo Park, Hanyang University, South Korea
- David Carter, The Charles Stark Draper Laboratory
- Shinji Matsui, University of Hyogo (Japan)
- Nam-Goo Cha and Xugang Xiong, Northeastern University
- Keun Park, Seoul National University of Technology
- Kevin Lee, University of Texas-Pan American