Nano/bio integrations for biosensing & drug delivery

Reema Zeineldin

Department of Pharmaceutical Sciences

Massachusetts College of Pharmacy & Health Sciences

December 2, 2010

Outline

- Research interests
 - Cell & membrane biomimetics biosensing
 - Carbon nanotubes drug delivery

Cell and membrane mimetic systems for biosensing

Model of cell membrane

Cooper, 1997. The cell: a molecular approach.

Polar Hydrophobic head tail

Liposomes:

Sizes: 10's nm to sub-micrometer

Applications of SLB

- Biomimetic platform
 - BiosensorsMolecular interactionsHigh throughput screening
 - Drug delivery (micro / nano)

Biosensors employing SLBs on microspheres for sensing interactions with membranes

Summary SLBs

- Advantages over liposomes
- Cell mimetic entrap & release compounds
- Applications
 - Biosensing
 - · Detected interactions with SLB

 Carbon nanotubes for targeted drug delivery to ovarian cancer

Intraperitoneal (IP) therapy in ovarian cancer (OVCA)

- · Localized exposure to anti-neoplastic agents
 - Spare internal organs toxic effects of drugs administered intravenously
 - High [drugs]

Specificity:

Targeting OVCA through tumor markers or over-expressed receptors

Folate receptor alpha (FRα)

Carbon nanotubes (CNTs)

http://www.den.hokudai.ac.jp/rikou/akasak/homemenu/Chemical%20IIIustration/Carbon/Carbon.htm

SWNT: single-walled nanotubes

d ~ 1.2 - 1.4 nm length nm's to μ m's

MWNT: multi-walled nanotubes

d ~ 8 - 50 nm length nm's to μ m's

500 mg

2 mg in 500 mL

Dispersion by functionalizing CNTs:

- 1. Chemical conjugation
- 2. Adsorption (involves ultrasonication)

Chemical modifications / conjugations

Bianco & coworkers 2005. Current Opinion in Chemical Biology 9:674-679

Physical adsorption

e.g. phospholipid-polyethylene glycol (PL-PEG) ultrasonication – 1 to 2 hr

Advantages of <u>functionalized</u> CNTs for drug delivery

CNTs \leq 1 μm deliver to cells: protein, nucleic acids, drugs

Non-immunogenic (short-term studies)

Little toxicity (short-term studies)

Advantages, cont Multifunctional Multifunctional

Advantages, cont

- · Cleared rapidly from body
- High thermal conductivity
- Hollow cylinders can introduce molecules into internal space
- Easy uptake

PEGylation:

Increases half-life in circulation Reduce non-specific uptake by cells Blocks non-specific binding to proteins

Evaluation of cellular uptake of SWNTs functionalized by adsorbing PL-PEG led to unexpected findings:

PL-PEG2000 (i.e., the MW of PEG is ~2000) to SWNTs did not reduce uptake of SWNTs

PL-PEG5000 gave contradictory results

Mass spectrometry (MS)

Analytical tool for measuring molecular mass of a sample

m/z = mass-to-charge ratio

Integrity of PEG is important to prevent nonspecific uptake of SWNTs

2nd question: Can we employ intact PEG to target a cancer-specific receptor?

Folate receptor alpha (FRα)

Intracellular fate of targeted SWNTs

- Their environment may be employed for releasing drugs

Target receptors on OVCA cells:

- Folate receptor alpha (FRα)
- Epidermal growth factor receptor (EGFR)

Acknowledgements

Chemical & Biomedical Engineering:

Dr. Gabriel P Lopez

Dr. David Whitten

Center for High Technology Materials:

Dr. Steve Brueck

Pathology (Flow cytometry):

Dr. Larry Sklar

Dr. Tione Buranda

Sandia National Labs (SNL):

Dr. Darryl Sasaki

Funding:

NSF-SENSORS CTS 0332315 (Lopez)
NSF-NIRT EEC 0210835 (Lopez)
NSF-NIRT CTS 0404124 (Lopez)
ARO DAAD19-03-1-0173 (Lopez)
DTRA W911NF-07-1-0079 (Whitten)
CINT & SNL

mu ham

Mechanical Engineering: Dr. Marwan Al-Haik

Funding:
MCPHS-FDC (Zeineldin)
ACS-IRG #RG-92-024 (Zeineldin)
HSC-RAC Nursing/Pharmacy (Zeineldin)