Metadata Requirements and Projects for Nanomaterial Characterization

Martin Fritts

Nanoinformatics 2010 November 3-4, 2010

Increasing Collaboration

Nanomaterial Characterization

- Physico-chemical properties
- In vitro
- In vivo
 - Standard Protocols
 - Sample Preparation
 - Interlaboratory Studies
 - Routes of Exposure
- With Genomic, Proteomic
 Data
- In silico experiments
- SARS
- Personalized Medicine

caNanoLAB

FDA, NIST

ILS: ASTM, IANH, ...

NPO

NIEHS...

caBIG WG

Nano-TAB (ISA-TAB)

CSN

ACTION-Grid

Design Sensitivity Analysis and Optimization

From: "Sensitivity Analysis", Andrea Saltelli, European Commission, Joint Research Centre, Ispra, Presented at Piacenza, May 14-15 2009

Informatics Needs

The need for a federated informatics infrastructure with layered access control for public and private data

The need for measures of error and uncertainty in the data

The need for semantic search

- Ontology development and mapping
- Standards (Nano-TAB)
- Advanced search
- Search based on structural motifs of interest
- Nanomaterial registry

The need for coupling uncertainty analysis and sensitivity analysis using predictive models

The need to develop, share and validate structural, computational and predictive models

Summary

The need for collaboration in nanotechnology may be best summarized in analogy with the parable of the blind men and the elephant.

- Input from scientists in different disciplines is needed to develop nanotechnology applications (particularly with respect to their <u>activity</u> -<u>and reporting error and uncertainty</u>)
- Each disciplines may examine different aspects of the <u>structure</u> of nanomaterial using their preferred tools ("If you test with one technique you are inevitably wrong")
- Communication about both structure and activity are hindered by lack of communication of what "they mean" (i.e., lack of <u>semantics</u>)
- They need a shared conceptual, analysis, and simulation models through which to reference and annotate their observations and to formulate <u>structure-activity relationships</u>
- <u>Intelligent design</u> is not possible without shared models and good communication among disciplines (especially for EHS risk analysis and mitigation)