Scalable nanostructured membranes for solid-oxide fuel cells

Tsuchiya, Masaru and Lai, Bo-Kuai and Ramanathan, Shriram. (2011) Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotechnology, 6 (5). p. 282. ISSN 1748-3387

Full text not available from this repository.

Abstract

The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800 °C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes2. However, although proof-of-concept thin-film devices have been demonstrated3, scaling up remains a significant challenge because large-area membranes less than ~100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm–2 at 510 °C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.

Item Type: Article
InterNano Taxonomy: Areas of Application > Energy and Utilities
Collections: Nanomanufacturing Research Collection
Depositing User: Amulya Gullapalli
Date Deposited: 13 Jul 2011 03:37
Last Modified: 13 Jul 2011 03:37
URI: http://eprints.internano.org/id/eprint/635

Actions (login required)

View Item View Item